
InputConvolutionLayer

...

N+2P

T+2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

OutputConvolutionLayer

...

Np

Tp

Fp Deep learning:
Technical introduction

Input Convolution Layer

...

N + 2P

T + 2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

Output Convolution Layer

...

Np

Tp

Fp

Thomas Epelbaum

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

R
el
u
(x
)

ReLU function and its derivative

ReLU(x)

ReLU’(x)
h

(0)
0Bias

h
(0)
1Input #2

h
(0)
2Input #3

h
(0)
3Input #4

h
(0)
4Input #5

h
(0)
5Input #6

h
(1)
0

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

h
(1)
5

h
(1)
6

h
(h)
0

h
(h)
1

h
(h)
2

h
(h)
3

h
(h)
4

h
(h)
5

h
(N)
1 Output #1

h
(N)
2 Output #2

h
(N)
3 Output #3

h
(N)
4 Output #4

h
(N)
5 Output #5

Hidden
layer 1

Input
layer

Hidden
layer h

Output
layer

• • • • • •

...

N0

T0

F0

R0

R0

S0

..
..
..
.

F1

..

...
S1

R1

R1

N1

T1

F1

...
S2

R2

R2

N2

T2

F2

..

..

..

.
F3

..

......
T3

N3

F3
bias

......
F4

......

..

..F5

......

......
F5

c(ν τ−1) c(ν τ)

h(ν−1 τ)

h(ν τ−1)

h(ν−1 τ)

h(ν τ−1)

h(ν−1 τ)

h(ν τ−1)

h(ν−1 τ)

h(ν τ−1)

Θfν (ν) Θiν (ν) Θgν (ν) Θoν (ν)

Θoτ (ν)

Θgτ (ν)

Θiτ (ν)

Θgτ (ν)

f (ν τ)

σ σ

tanh
i(ν τ) g(ν τ)

×
tanh

σ
o(ν τ)

×

h(ν τ)

h(ν τ)

h(ν τ)

h(ν τ)

h(ν τ)h(ν τ)h(ν τ)h(ν τ)

+

+

+

+

× +

Input

Relu 1
BN 1

Conv 1
Relu 2
BN 2

Conv 2
Relu 3
BN 3

Conv 3

Output
+

= Res

August 31, 2017

2

Contents

1 Preface 5

2 Acknowledgements 7

3 Introduction 9

4 Feedforward Neural Networks 11
4.1 Introduction . 11
4.2 FNN architecture . 12
4.3 Some notations . 12
4.4 Weight averaging . 13
4.5 Activation function . 14
4.6 FNN layers . 19
4.7 Loss function . 20
4.8 Regularization techniques . 21
4.9 Backpropagation . 26
4.10 Which data sample to use for gradient descent? 28
4.11 Gradient optimization techniques 29
4.12 Weight initialization . 31
Appendices . 32
4.A Backprop through the output layer 32
4.B Backprop through hidden layers 33
4.C Backprop through BatchNorm . 33
4.D FNN ResNet (non standard presentation) 34
4.E FNN ResNet (more standard presentation) 37
4.F Matrix formulation . 37

5 Convolutional Neural Networks 39
5.1 Introduction . 39
5.2 CNN architecture . 39
5.3 CNN specificities . 40
5.4 Modification to Batch Normalization 46
5.5 Network architectures . 47
5.6 Backpropagation . 53
Appendices . 61
5.A Backprop through BatchNorm . 61
5.B Error rate updates: details . 62

3

4 CONTENTS

5.C Weight update: details . 64
5.D Coefficient update: details . 65
5.E Practical Simplification . 65
5.F Batchpropagation through a ResNet module 68
5.G Convolution as a matrix multiplication 69
5.H Pooling as a row matrix maximum 72

6 Recurrent Neural Networks 73
6.1 Introduction . 73
6.2 RNN-LSTM architecture . 73
6.3 Extreme Layers and loss function 75
6.4 RNN specificities . 76
6.5 LSTM specificities . 80
Appendices . 85
6.A Backpropagation trough Batch Normalization 85
6.B RNN Backpropagation . 86
6.C LSTM Backpropagation . 90
6.D Peephole connexions . 95

7 Conclusion 97

Chapter 1
InputConvolutionLayer

...

N+2P

T+2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

OutputConvolutionLayer

...

Np

Tp

Fp Preface Input Convolution Layer

...

N + 2P

T + 2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

Output Convolution Layer

...

Np

Tp

Fp

I
started learning about deep learning fundamentals in February 2017.

At this time, I knew nothing about backpropagation, and was com-
pletely ignorant about the differences between a Feedforward, Con-
volutional and a Recurrent Neural Network.

As I navigated through the humongous amount of data available on deep
learning online, I found myself quite frustrated when it came to really un-
derstand what deep learning is, and not just applying it with some available
library.

In particular, the backpropagation update rules are seldom derived, and
never in index form. Unfortunately for me, I have an "index" mind: seeing a 4
Dimensional convolution formula in matrix form does not do it for me. Since
I am also stupid enough to like recoding the wheel in low level programming
languages, the matrix form cannot be directly converted into working code
either.

I therefore started some notes for my personal use, where I tried to rederive
everything from scratch in index form.

I did so for the vanilla Feedforward network, then learned about L1 and
L2 regularization , dropout[1], batch normalization[2], several gradient de-
scent optimization techniques... Then turned to convolutional networks, from
conventional single digit number of layer conv-pool architectures[3] to recent
VGG[4] ResNet[5] ones, from local contrast normalization and rectification to
bacthnorm... And finally I studied Recurrent Neural Network structures[6],
from the standard formulation to the most recent LSTM one[7].

As my work progressed, my notes got bigger and bigger, until a point when
I realized I might have enough material to help others starting their own deep
learning journey.

5

6 CHAPTER 1. PREFACE

This work is bottom-up at its core. If you are searching a working Neural
Network in 10 lines of code and 5 minutes of your time, you have come to the
wrong place. If you can mentally multiply and convolve 4D tensors, then I
have nothing to convey to you either.

If on the other hand you like(d) to rederive every tiny calculation of every
theorem of every class that you stepped into, then you might be interested by
what follow!

Chapter 2

InputConvolutionLayer

...

N+2P

T+2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

OutputConvolutionLayer

...

Np

Tp

Fp Acknowledgements Input Convolution Layer

...

N + 2P

T + 2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

Output Convolution Layer

...

Np

Tp

Fp

T
his work has no benefit nor added value to the deep learning topic on
its own. It is just the reformulation of ideas of brighter researchers to
fit a peculiar mindset: the one of preferring formulas with ten indices
but where one knows precisely what one is manipulating rather than

(in my opinion sometimes opaque) matrix formulations where the dimension
of the objects are rarely if ever specified.

Among the brighter people from whom I learned online are Andrew Ng.
His Coursera class (here) was the first contact I got with Neural Network, and
this pedagogical introduction allowed me to build on solid ground.

I also wish to particularly thanks Hugo Larochelle, who not only built a
wonderful deep learning class (here), but was also kind enough to answer
emails from a complete beginner and stranger!

The Stanford class on convolutional networks (here) proved extremely valu-
able to me, so did the one on Natural Language processing (here).

I also benefited greatly from Sebastian Ruder’s blog (here), both from the
blog pages on gradient descent optimization techniques and from the author
himself.

I learned more about LSTM on colah’s blog (here), and some of my draw-
ings are inspired from there.

I also thank Jonathan Del Hoyo for the great articles that he regularly shares
on LinkedIn.

Many thanks go to my collaborators at Mediamobile, who let me dig as
deep as I wanted on Neural Networks. I am especially indebted to Clément,
Nicolas, Jessica, Christine and Céline.

7

https://www.coursera.org/learn/machine-learning
http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html
http://cs231n.github.io/convolutional-networks/
http://web.stanford.edu/class/cs224n/
http://ruder.io/#open
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

8 CHAPTER 2. ACKNOWLEDGEMENTS

Thanks to Jean-Michel Loubes and Fabrice Gamboa, from whom I learned
a great deal on probability theory and statistics.

I end this list with my employer, Mediamobile, which has been kind enough
to let me work on this topic with complete freedom. A special thanks to
Philippe, who supervised me with the perfect balance of feedback and free-
dom!

Chapter 3
InputConvolutionLayer

...

N+2P

T+2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

OutputConvolutionLayer

...

Np

Tp

Fp Introduction Input Convolution Layer

...

N + 2P

T + 2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

Output Convolution Layer

...

Np

Tp

Fp

T
his note aims at presenting the three most common forms of neural
network architectures. It does so in a technical though hopefully ped-
agogical way, buiding up in complexity as one progresses through the
chapters.

Chapter 4 starts with the first type of network introduced historically: a
regular feedforward neural network, itself an evolution of the original per-
ceptron [8] algorithm. One should see the latter as a non-linear regression,
and feedforward networks schematically stack perceptron layers on top of one
another.

We will thus introduce in chapter 4 the fundamental building blocks of
the simplest neural network layers: weight averaging and activation functions.
We will also introduce gradient descent as a way to train the network when
joint with the backpropagation algorithm, as a way to minimize a loss function
adapted to the task at hand (classification or regression). The more technical
details of the backpropagation algorithm are found in the appendix of this
chapter, alongside with an introduction to the state of the art feedforward
neural network, the ResNet. One can finally find a short matrix description of
the feedforward network.

In chapter 5, we present the second type of neural network studied: the con-
volutional networks, particularly suited to treat images and label them. This
implies presenting the mathematical tools related to this network: convolution,
pooling, stride... As well as seeing the modification of the building block in-
troduced in chapter 4. Several convolutional architectures are then presented,
and the appendices once again detail the difficult steps of the main text.

Chapter 6 finally presents the network architecture suited for data with a
temporal structure – as time series for instance, the recurrent neural network.

9

10 CHAPTER 3. INTRODUCTION

There again, the novelties and the modifications of the material introduced in
the two previous chapters are detailed in the main text, while the appendices
give all what one needs to understand the most cumbersome formula of this
kind of network architecture.

Chapter 4

InputConvolutionLayer

...

N+2P

T+2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

OutputConvolutionLayer

...

Np

Tp

Fp Feedforward Neural Networks Input Convolution Layer

...

N + 2P

T + 2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

Output Convolution Layer

...

Np

Tp

Fp

Contents
4.1 Introduction . 11

4.2 FNN architecture . 12

4.3 Some notations . 12

4.4 Weight averaging . 13

4.5 Activation function . 14

4.5.1 The sigmoid function . 14

4.5.2 The tanh function . 15

4.5.3 The ReLU function . 16

4.5.4 The leaky-ReLU function 17

4.5.5 The ELU function . 18

4.6 FNN layers . 19

4.6.1 Input layer . 19

4.6.2 Fully connected layer . 20

4.6.3 Output layer . 20

4.7 Loss function . 20

4.8 Regularization techniques . 21

4.8.1 L2 regularization . 21

4.8.2 L1 regularization . 22

4.8.3 Clipping . 23

4.8.4 Dropout . 23

11

12 CHAPTER 4. FEEDFORWARD NEURAL NETWORKS

4.8.5 Batch Normalization . 24

4.9 Backpropagation . 26

4.9.1 Backpropagate through Batch Normalization 26

4.9.2 error updates . 26

4.9.3 Weight update . 27

4.9.4 Coefficient update . 27

4.10 Which data sample to use for gradient descent? 28

4.10.1 Full-batch . 28

4.10.2 Stochastic Gradient Descent (SGD) 28

4.10.3 Mini-batch . 28

4.11 Gradient optimization techniques 29

4.11.1 Momentum . 29

4.11.2 Nesterov accelerated gradient 29

4.11.3 Adagrad . 30

4.11.4 RMSprop . 30

4.11.5 Adadelta . 30

4.11.6 Adam . 31

4.12 Weight initialization . 31

Appendices . 32

4.A Backprop through the output layer 32

4.B Backprop through hidden layers 33

4.C Backprop through BatchNorm 33

4.D FNN ResNet (non standard presentation) 34

4.E FNN ResNet (more standard presentation) 37

4.F Matrix formulation . 37

4.1 Introduction

I
n this section we review the first type of neural network that has
been developed historically: a regular Feedforward Neural Network
(FNN). This network does not take into account any particular struc-
ture that the input data might have. Nevertheless, it is already a very

powerful machine learning tool, especially when used with the state of the art
regularization techniques. These techniques – that we are going to present as

4.2. FNN ARCHITECTURE 13

well – allowed to circumvent the training issues that people experienced when
dealing with "deep" architectures: namely the fact that neural networks with an
important number of hidden states and hidden layers have proven historically
to be very hard to train (vanishing gradient and overfitting issues).

4.2 FNN architecture

h(0)0Bias

h(0)1
Input #2

h(0)2
Input #3

h(0)3
Input #4

h(0)4
Input #5

h(0)5
Input #6

h(1)0

h(1)1

h(1)2

h(1)3

h(1)4

h(1)5

h(1)6

h(ν)0

h(ν)1

h(ν)2

h(ν)3

h(ν)4

h(ν)5

h(N)
1

Output #1

h(N)
2

Output #2

h(N)
3

Output #3

h(N)
4

Output #4

h(N)
5

Output #5

Hidden
layer 1

Input
layer

Hidden
layer ν

Output
layer

• • • • • •

Figure 4.1: Neural Network with N + 1 layers (N − 1 hidden layers). For
simplicity of notations, the index referencing the training set has not been
indicated. Shallow architectures use only one hidden layer. Deep learning
amounts to take several hidden layers, usually containing the same number of
hidden neurons. This number should be on the ballpark of the average of the
number of input and output variables.

A FNN is formed by one input layer, one (shallow network) or more (deep
network, hence the name deep learning) hidden layers and one output layer.
Each layer of the network (except the output one) is connected to a following
layer. This connectivity is central to the FNN structure and has two main
features in its simplest form: a weight averaging feature and an activation
feature. We will review these features extensively in the following

14 CHAPTER 4. FEEDFORWARD NEURAL NETWORKS

4.3 Some notations

In the following, we will call

• N the number of layers (not counting the input) in the Neural Network.

• Ttrain the number of training examples in the training set.

• Tmb the number of training examples in a mini-batch (see section 4.7).

• t ∈ J0, Tmb − 1K the mini-batch training instance index.

• ν ∈ J0, NK the number of layers in the FNN.

• Fν the number of neurons in the ν’th layer.

• X(t)
f = h(0)(t)f where f ∈ J0, F0 − 1K the input variables.

• y(t)f where f ∈ [0, FN − 1] the output variables (to be predicted).

• ŷ(t)f where f ∈ [0, FN − 1] the output of the network.

• Θ(ν) f ′

f for f ∈ [0, Fν − 1], f ′ ∈ [0, Fν+1 − 1] and ν ∈ [0, N − 1] the weights
matrices

• A bias term can be included. In practice, we will see when talking about
the batch-normalization procedure that we can omit it.

4.4 Weight averaging

One of the two main components of a FNN is a weight averaging proce-
dure, which amounts to average the previous layer with some weight matrix
to obtain the next layer. This is illustrated on the figure 4.2

4.5. ACTIVATION FUNCTION 15

h(0)0

h(0)1

h(0)2

h(0)3

h(0)4

h(0)5

a(0)3

Θ(0)3
0

Θ(0)3
1

Θ(0)3
2

Θ(0)3
3

Θ(0)3
4

Θ(0)3
5

Figure 4.2: Weight averaging procedure.

Formally, the weight averaging procedure reads:

a(t)(ν)f =
Fν−1+ε

∑
f ′=0

Θ(ν) f
f ′ h(t)(ν)f ′ , (4.1)

where ν ∈ J0, N − 1K, t ∈ J0, Tmb − 1K and f ∈ J0, Fν+1 − 1K. The ε is here
to include or exclude a bias term. In practice, as we will be using batch-
normalization, we can safely omit it (ε = 0 in all the following).

4.5 Activation function

The hidden neuron of each layer is defined as

h(t)(ν+1)
f = g

(
a(t)(ν)f

)
, (4.2)

where ν ∈ J0, N − 2K, f ∈ J0, Fν+1 − 1K and as usual t ∈ J0, Tmb − 1K. Here
g is an activation function – the second main ingredient of a FNN – whose
non-linearity allow to predict arbitrary output data. In practice, g is usually
taken to be one of the functions described in the following subsections.

4.5.1 The sigmoid function

The sigmoid function takes its value in]0, 1[and reads

g(x) = σ(x) =
1

1 + e−x . (4.3)

16 CHAPTER 4. FEEDFORWARD NEURAL NETWORKS

Its derivative is

σ′(x) = σ(x) (1− σ(x)) . (4.4)

This activation function is not much used nowadays (except in RNN-LSTM
networks that we will present later in chapter 6).

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

x

σ
(x
)

Sigmoid function and its derivative

σ(x)

σ(x)(1− σ(x))

Figure 4.3: the sigmoid function and its derivative.

4.5.2 The tanh function

The tanh function takes its value in]− 1, 1[and reads

g(x) = tanh(x) =
1− e−2x

1 + e−2x . (4.5)

Its derivative is

tanh′(x) = 1− tanh2(x) . (4.6)

This activation function has seen its popularity drop due to the use of the
activation function presented in the next section.

4.5. ACTIVATION FUNCTION 17

−10 −5 0 5 10
−1

−0.5

0

0.5

1

x

ta
n
h
(x
)

tanh function and its derivative

tanh(x)

1− tanh2(x)

Figure 4.4: the tanh function and its derivative.

It is nevertherless still used in the standard formulation of the RNN-LSTM
model (6).

4.5.3 The ReLU function

The ReLU – for Rectified Linear Unit – function takes its value in [0,+∞[
and reads

g(x) = ReLU(x) =

{
x x ≥ 0
0 x < 0

. (4.7)

Its derivative is

ReLU′(x) =

{
1 x ≥ 0
0 x < 0

. (4.8)

18 CHAPTER 4. FEEDFORWARD NEURAL NETWORKS

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

R
el
u
(x
)

ReLU function and its derivative

ReLU(x)

ReLU’(x)

Figure 4.5: the ReLU function and its derivative.

This activation function is the most extensively used nowadays. Two of its
more common variants can also be found : the leaky ReLU and ELU – Expo-
nential Linear Unit. They have been introduced because the ReLU activation
function tends to "kill" certain hidden neurons: once it has been turned off
(zero value), it can never be turned on again.

4.5.4 The leaky-ReLU function

The leaky-ReLU –for Linear Rectified Linear Unit – function takes its value
in] −∞,+∞[and is a slight modification of the ReLU that allows non-zero
value for the hidden neuron whatever the x value. It reads

g(x) = l− ReLU(x) =

{
x x ≥ 0
0.01 x x < 0

. (4.9)

Its derivative is

l− ReLU′(x) =

{
1 x ≥ 0
0.01 x < 0

. (4.10)

4.5. ACTIVATION FUNCTION 19

−2 −1 0 1 2

0

0.5

1

1.5

2

x

l-
R
eL

U
(x
)

Leaky ReLU function and its derivative

l-ReLU(x)

l-ReLU’(x)

Figure 4.6: the leaky-ReLU function and its derivative.

A variant of the leaky-ReLU can also be found in the literature : the Parametric-
ReLU, where the arbitrary 0.01 in the definition of the leaky-ReLU is replaced
by an α coefficient, that can be computed via backpropagation.

g(x) = Parametric− ReLU(x) =

{
x x ≥ 0
α x x < 0

. (4.11)

Its derivative is

Parametric− ReLU′(x) =

{
1 x ≥ 0
α x < 0

. (4.12)

4.5.5 The ELU function
The ELU –for Exponential Linear Unit – function takes its value between

]− 1,+∞[and is inspired by the leaky-ReLU philosophy: non-zero values for
all x’s. But it presents the advantage of being C1.

g(x) = ELU(x) =

{
x x ≥ 0
ex − 1 x < 0

. (4.13)

Its derivative is

ELU′(x) =

{
1 x ≥ 0
ex x < 0

. (4.14)

20 CHAPTER 4. FEEDFORWARD NEURAL NETWORKS

−2 −1 0 1 2
−1

0

1

2

x

E
L
U
(x
)

ELU function and its derivative

ELU(x)

ELU’(x)

Figure 4.7: the ELU function and its derivative.

4.6 FNN layers

As illustrated in figure 4.1, a regular FNN is composed by several specific
layers. Let us explicit them one by one.

4.6.1 Input layer

The input layer is one of the two places where the data at disposal for the
problem at hand come into place. In this chapter, we will be considering a
input of size F0, denoted X(t)

f , with1 t ∈ J0, Tmb − 1K (size of the mini-batch,
more on that when we will be talking about gradient descent techniques), and
f ∈ J0, F0 − 1K. Given the problem at hand, a common procedure could be to
center the input following the procedure

X̃(t)
f = X(t)

f − µ f , (4.15)

with

µ f =
1

Ttrain

Ttrain−1

∑
t=0

X(t)
f . (4.16)

1To train the FNN, we jointly compute the forward and backward pass for Tmb samples of
the training set, with Tmb � Ttrain. In the following we will thus have t ∈ J0, Tmb − 1K.

4.7. LOSS FUNCTION 21

This correspond to compute the mean per data types over the training set.
Following our notations, let us recall that

X(t)
f = h(t)(0)f . (4.17)

4.6.2 Fully connected layer

The fully connected operation is just the conjunction of the weight averag-
ing and the activation procedure. Namely, ∀ν ∈ J0, N − 1K

a(t)(ν)f =
Fν−1

∑
f ′=0

Θ(ν) f
f ′ h(t)(ν)f ′ . (4.18)

and ∀ν ∈ J0, N − 2K

h(t)(ν+1)
f = g

(
a(t)(ν)f

)
. (4.19)

for the case where ν = N − 1, the activation function is replaced by an output
function.

4.6.3 Output layer

The output of the FNN reads

h(t)(N)
f = o(a(t)(N−1)

f) , (4.20)

where o is called the output function. In the case of the Euclidean loss function,
the output function is just the identity. In a classification task, o is the softmax
function.

o
(

a(t)(N−1)
f

)
=

ea(t)(N−1)
f

FN−1−1
∑

f ′=0
e

a(t)(N−1)
f ′

(4.21)

4.7 Loss function

The loss function evaluates the error performed by the FNN when it tries
to estimate the data to be predicted (second place where the data make their

22 CHAPTER 4. FEEDFORWARD NEURAL NETWORKS

appearance). For a regression problem, this is simply a mean square error
(MSE) evaluation

J(Θ) =
1

2Tmb

Tmb−1

∑
t=0

FN−1

∑
f=0

(
y(t)f − h(t)(N)

f

)2
, (4.22)

while for a classification task, the loss function is called the cross-entropy func-
tion

J(Θ) = − 1
Tmb

Tmb−1

∑
t=0

FN−1

∑
f=0

δ
f
y(t)

ln h(t)(N)
f , (4.23)

and for a regression problem transformed into a classification one, calling C
the number of bins leads to

J(Θ) = − 1
Tmb

Tmb−1

∑
t=0

FN−1

∑
f=0

C−1

∑
c=0

δc
y(t)f

ln h(t)(N)
f c . (4.24)

For reasons that will appear clear when talking about the data sample used at
each training step, we denote

J(Θ) =
Tmb−1

∑
t=0

Jmb(Θ) . (4.25)

4.8 Regularization techniques

On of the main difficulties when dealing with deep learning techniques is
to get the deep neural network to train efficiently. To that end, several regular-
ization techniques have been invented. We will review them in this section

4.8.1 L2 regularization

L2 regularization is the most common regularization technique that on can
find in the literature. It amounts to add a regularizing term to the loss function
in the following way

JL2(Θ) = λL2

N−1

∑
ν=0

∥∥∥Θ(ν)
∥∥∥2

L2
= λL2

N−1

∑
ν=0

Fν+1−1

∑
f=0

Fν−1

∑
f ′=0

(
Θ(ν) f ′

f

)2
. (4.26)

4.8. REGULARIZATION TECHNIQUES 23

This regularization technique is almost always used, but not on its own. A
typical value of λL2 is in the range 10−4 − 10−2. Interestingly, this L2 regular-
ization technique has a Bayesian interpretation: it is Bayesian inference with
a Gaussian prior on the weights. Indeed, for a given ν, the weight averaging
procedure can be considered as

a(t)(ν)f =
Fν−1

∑
f ′=0

Θ(ν) f
f ′ h(t)(ν)f ′ + ε , (4.27)

where ε is a noise term of mean 0 and variance σ2. Hence the following Gaus-
sian likelihood for all values of t and f :

N
(

a(t)(i)f

∣∣∣∣∣Fν−1

∑
f ′=0

Θ(ν) f
f ′ h(t)(ν)f ′ , σ2

)
. (4.28)

Assuming all the weights to have a Gaussian prior of the form N
(

Θ(ν) f
f ′

∣∣∣λ−1
L2

)
with the same parameter λL2, we get the following expression

P =
Tmb−1

∏
t=0

Fν+1−1

∏
f=0

[
N
(

a(t)(ν)f

∣∣∣∣∣Fν−1

∑
f ′=0

Θ(ν) f
f ′ h(t)(ν)f ′ , σ2

)
Fν−1

∏
f ′=0
N
(

Θ(ν) f
f ′

∣∣∣λ−1
L2

)]

=
Tmb−1

∏
t=0

Fν+1−1

∏
f=0

 1√
2πσ2

e−

(
a(t)(ν)f −∑

Fi−1
f ′=0

Θ
(ν) f
f ′ h(t)(ν)

f ′

)2

2σ2
Fν−1

∏
f ′=0

√
λL2

2π
e−

(
Θ
(ν) f
f ′

)2
λL2

2

 .

(4.29)

Taking the log of it and forgetting most of the constant terms leads to

L ∝
1

Tmbσ2

Tmb−1

∑
t=0

Fν+1−1

∑
f=0

(
a(t)(ν)f −

Fν−1

∑
f ′=0

Θ(ν) f
f ′ h(t)(ν)f ′

)2

+ λL2

Fν+1−1

∑
f=0

Fν−1

∑
f ′=0

(
Θ(ν) f

f ′

)2
,

(4.30)

and the last term is exactly the L2 regulator for a given nu value (see formula
(4.26)).

4.8.2 L1 regularization

L1 regularization amounts to replace the L2 norm by the L1 one in the L2
regularization technique

JL1(Θ) = λL1

N−1

∑
ν=0

∥∥∥Θ(ν)
∥∥∥

L1
= λL1

N−1

∑
ν=0

Fν+1−1

∑
f=0

Fν−1

∑
f ′=0

∣∣∣Θ(ν) f
f ′

∣∣∣ . (4.31)

24 CHAPTER 4. FEEDFORWARD NEURAL NETWORKS

It can be used in conjunction with L2 regularization, but again these techniques
are not sufficient on their own. A typical value of λL1 is in the range 10−4 −
10−2. Following the same line as in the previous section, one can show that L1
regularization is equivalent to Bayesian inference with a Laplacian prior on the
weights

F
(

Θ(ν) f
f ′

∣∣∣0, λ−1
L1

)
=

λL1

2
e
−λL1

∣∣∣Θ(ν) f
f ′

∣∣∣ . (4.32)

4.8.3 Clipping

Clipping forbids the L2 norm of the weights to go beyond a pre-determined
threshold C. Namely after having computed the update rules for the weights,
if their L2 norm goes above C, it is pushed back to C

if
∥∥∥Θ(ν)

∥∥∥
L2

> C −→ Θ(ν) f
f ′ = Θ(ν) f

f ′ ×
C∥∥Θ(ν)
∥∥

L2

. (4.33)

This regularization technique avoids the so-called exploding gradient prob-
lem, and is mainly used in RNN-LSTM networks. A typical value of C is in the
range 100− 101. Let us now turn to the most efficient regularization techniques
for a FNN: dropout and Batch-normalization.

4.8.4 Dropout

A simple procedure allows for better backpropagation performance for clas-
sification tasks: it amounts to stochastically drop some of the hidden units (and
in some instances even some of the input variables) for each training example.

4.8. REGULARIZATION TECHNIQUES 25

h(0)0Bias

h(0)1
Input #2

h(0)2
Input #3

h(0)3
Input #4

h(0)5
Input #6

h(0)4

h(1)0

h(1)1

h(1)2

h(1)4

h(1)3

h(1)5

h(1)6

h(ν)0

h(ν)2

h(ν)4

h(ν)1

h(ν)3

h(ν)5

h(N)
1

Output #1

h(N)
2

Output #2

h(N)
3

Output #3

h(N)
4

Output #4

h(N)
5

Output #5

Hidden
layer 1

Input
layer

Hidden
layer ν

Output
layer

• • • • • •

Figure 4.8: The neural network of figure 4.1 with dropout taken into account
for both the hidden layers and the input. Usually, a different (lower) probability
for turning off a neuron is adopted for the input than the one adopted for the
hidden layers.

This amounts to do the following change: for ν ∈ J1, N − 1K

h(ν)f = m(ν)
f g

(
a(ν)f

)
(4.34)

with m(i)
f following a p Bernoulli distribution with usually p = 1

5 for the mask

of the input layer and p = 1
2 otherwise. Dropout[1] has been the most success-

ful regularization technique until the appearance of Batch Normalization.

4.8.5 Batch Normalization

Batch normalization[2] amounts to jointly normalize the mini-batch set per
data types, and does so at each input of a FNN layer. In the original paper, the
authors argued that this step should be done after the convolutional layers, but
in practice it has been shown to be more efficient after the non-linear step. In

26 CHAPTER 4. FEEDFORWARD NEURAL NETWORKS

our case, we will thus consider ∀i ∈ J0, N − 2K

h̃(t)(ν)f =
h(t)(ν+1)

f − ĥ(ν)f√(
σ̂
(ν)
f

)2
+ ε

, (4.35)

with

ĥ(ν)f =
1

Tmb

Tmb−1

∑
t=0

h(t)(ν+1)
f (4.36)

(
σ̂
(ν)
f

)2
=

1
Tmb

Tmb−1

∑
t=0

(
h(t)(ν+1)

f − ĥ(ν)f

)2
. (4.37)

To make sure that this transformation can represent the identity transform, we
add two additional parameters (γ f , β f) to the model

y(t)(ν)f = γ
(ν)
f h̃(t)(ν)f + β

(ν)
f = γ̃

(ν)
f h(t)(ν)f + β̃

(ν)
f . (4.38)

The presence of the β
(ν)
f coefficient is what pushed us to get rid of the bias term,

as it is naturally included in batchnorm. During training, one must compute a
running sum for the mean and the variance, that will serve for the evaluation of
the cross-validation and the test set (calling e the number of iterations/epochs)

E
[

h(t)(ν+1)
f

]
e+1

=
eE
[

h(t)(ν)f

]
e
+ ĥ(ν)f

e + 1
, (4.39)

Var
[

h(t)(ν+1)
f

]
e+1

=
eVar

[
h(t)(ν)f

]
e
+
(

σ̂
(ν)
f

)2

e + 1
(4.40)

and what will be used at test time is

E
[

h(t)(ν)f

]
= E

[
h(t)(ν)f

]
, Var

[
h(t)(ν)f

]
=

Tmb

Tmb − 1
Var

[
h(t)(ν)f

]
. (4.41)

so that at test time

y(t)(ν)f = γ
(ν)
f

h(t)(ν)f − E[h(t)(ν)f]√
Var

[
h(t)(ν)f

]
+ ε

+ β
(ν)
f . (4.42)

In practice, and as advocated in the original paper, on can get rid of dropout
without loss of precision when using batch normalization. We will adopt this
convention in the following.

4.9. BACKPROPAGATION 27

4.9 Backpropagation

Backpropagation[9] is the standard technique to decrease the loss function
error so as to correctly predict what one needs. As it name suggests, it amounts
to backpropagate through the FNN the error performed at the output layer, so
as to update the weights. In practice, on has to compute a bunch of gradient
terms, and this can be a tedious computational task. Nevertheless, if performed
correctly, this is the most useful and important task that one can do in a FN. We
will therefore detail how to compute each weight (and Batchnorm coefficients)
gradients in the following.

4.9.1 Backpropagate through Batch Normalization
Backpropagation introduces a new gradient

δ
f
f ′ J

(tt′)(ν)
f =

∂y(t
′)(ν)

f ′

∂h(t)(ν+1)
f

. (4.43)

we show in appendix 4.C that

J(tt
′)(ν)

f = γ̃
(ν)
f

δt′
t −

1 + h̃(t
′)(ν)

f h̃(t)(ν)f

Tmb

 . (4.44)

4.9.2 error updates

To backpropagate the loss error through the FNN, it is very useful to com-
pute a so-called error rate

δ
(t)(ν)
f =

∂

∂a(t)(ν)f

J(Θ) , (4.45)

We show in Appendix 4.B that ∀ν ∈ J0, N − 2K

δ
(t)(ν)
f = g′

(
a(t)(ν)f

) Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Θ(ν+1) f ′

f J(tt
′)(ν)

f δ
(t′)(ν+1)
f ′ , (4.46)

the value of δ
(t)(N−1)
f depends on the loss used. We show also in appendix 4.A

that for the MSE loss function

δ
(t)(N−1)
f =

1
Tmb

(
h(t)(N)

f − y(t)f

)
, (4.47)

28 CHAPTER 4. FEEDFORWARD NEURAL NETWORKS

and for the cross entropy loss function

δ
(t)(N−1)
f =

1
Tmb

(
h(t)(N)

f − δ
f
y(t)

)
. (4.48)

To unite the notation of chapters 4, 5 and 6, we will call

H(t)(ν+1)
f f ′ = g′

(
a(t)(ν)f

)
Θ(ν+1) f ′

f , (4.49)

so that the update rule for the error rate reads

δ
(t)(ν)
f =

Tmb−1

∑
t′=0

J(tt
′)(ν)

f

Fν+1−1

∑
f ′=0

H(t)(ν+1)
f f ′ δ

(t)(ν+1)
f ′ . (4.50)

4.9.3 Weight update

Thanks to the computation of the error rates, the derivation of the error rate
is straightforward. We indeed get ∀ν ∈ J1, N − 1K

∆Θ(ν) f
f ′ =

1
Tmb

Tmb−1

∑
t=0

Fν+1−1

∑
f ′′=0

Fν

∑
f ′′′=0

∂Θ(ν) f
′′

f ′′′

∂Θ(ν) f
f ′

y(t)(ν−1)
f ′′′

δ
(t)(ν)
f ′′

=
Tmb−1

∑
t=0

δ
(t)(ν)
f y(t)(ν−1)

f ′ .

(4.51)

and

∆Θ(0) f
f ′ =

Tmb−1

∑
t=0

δ
(t)(0)
f h(t)(0)f ′ . (4.52)

4.9.4 Coefficient update

The update rule for the Batchnorm coefficient can easily be computed thanks
to the error rate. It reads

∆γ(ν)
f =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

∂a(t)(ν+1)
f ′

∂γ
(i)
f

δ
(t)(ν+1)
f ′ =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

Θ(ν+1) f ′

f h̃(t)(i)f δ
(t)(ν+1)
f ′ ,

(4.53)

∆β(ν)
f =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

∂a(t)(ν+1)
f ′

∂β
(i)
f

δ
(t)(ν+1)
f ′ =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

Θ(ν+1) f ′

f δ
(t)(ν+1)
f ′ , (4.54)

4.10. WHICH DATA SAMPLE TO USE FOR GRADIENT DESCENT? 29

4.10 Which data sample to use for gradient descent?

From the beginning we have denoted Tmb the sample of the data from
which we train our model. This procedure is repeated a large number of time
(each time is called an epoch). But in the literature there exists three way to
sample from the data: Full-batch, Stochastic and Mini-batch gradient descent.
We explicit these terms in the following sections.

4.10.1 Full-batch

Full-batch takes the whole training set at each epoch, such that the loss
function reads

J(Θ) =
Ttrain−1

∑
t=0

Jtrain(Θ) . (4.55)

This choice has the advantage to be numerically stable, but it so costly in
computation time that it is rarely if ever used.

4.10.2 Stochastic Gradient Descent (SGD)

SGD amounts to take only one exemplary of the training set at each epoch

J(Θ) = JSGD(Θ) . (4.56)

This choice leads to faster computations, but is so numerically unstable that
the most standard choice by far is Mini-batch gradient descent.

4.10.3 Mini-batch

Mini-batch gradient descent is a compromise between stability and time ef-
ficiency, and is the middle-ground between Full-batch and Stochastic gradient
descent: 1� Tmb � Ttrain. Hence

J(Θ) =
Tmb−1

∑
t=0

Jmb(Θ) . (4.57)

All the calculations in this note have been performed using this gradient de-
scent technique.

30 CHAPTER 4. FEEDFORWARD NEURAL NETWORKS

4.11 Gradient optimization techniques

Once the gradients for backpropagation have been computed, the question
of how to add them to the existing weights arise. The most natural choice
would be to take

Θ(ν) f
f ′ = Θ(ν) f

f ′ − η∆Θ(i) f
f ′ . (4.58)

where η is a free parameter that is generally initialized thanks to cross-validation.
It can also be made epoch dependent (with usually a slow exponentially decay-
ing behaviour). When using Mini-batch gradient descent, this update choice
for the weights presents the risk of having the loss function being stuck in a
local minimum. Several method have been invented to prevent this risk. We
are going to review them in the next sections.

4.11.1 Momentum

Momentum[10] introduces a new vector ve and can be seen as keeping a
memory of what where the previous updates at prior epochs. Calling e the
number of epochs and forgetting the f , f ′, ν indices for the gradients to ease
the notations, we have

ve = γve−1 + η∆Θ , (4.59)

and the weights at epoch e are then updated as

Θe = Θe−1 − ve . (4.60)

γ is a new parameter of the model, that is usually set to 0.9 but that could also
be fixed thanks to cross-validation.

4.11.2 Nesterov accelerated gradient
Nesterov accelerated gradient[11] is a slight modification of the momentum

technique that allows the gradients to escape from local minima. It amounts to
take

ve = γve−1 + η∆Θ−γve−1 , (4.61)

and then again

Θe = Θe−1 − ve . (4.62)

Until now, the parameter η that controls the magnitude of the update has been
set globally. It would be nice to have a fine control of it, so that different
weights can be updated with different magnitudes.

4.11. GRADIENT OPTIMIZATION TECHNIQUES 31

4.11.3 Adagrad

Adagrad[12] allows to fine tune the different gradients by having individual
learning rates η. Calling for each value of f , f ′, i

ve =
e−1

∑
e′=0

(
∆Θ

e′

)2
, (4.63)

the update rule then reads

Θe = Θe−1 −
η√

ve + ε
∆Θ

e . (4.64)

One advantage of Adagrad is that the learning rate η can be set once and for
all (usually to 10−2) and does not need to be fine tune via cross validation
anymore, as it is individually adapted to each weight via the ve term. ε is here
to avoid division by 0 issues, and is usually set to 10−8.

4.11.4 RMSprop

Since in Adagrad one adds the gradient from the first epoch, the weight
are forced to monotonically decrease. This behaviour can be smoothed via the
Adadelta technique, which takes

ve = γve−1 + (1− γ)∆Θ
e , (4.65)

with γ a new parameter of the model, that is usually set to 0.9. The Adadelta
update rule then reads as the Adagrad one

Θe = Θe−1 −
η√

ve + ε
∆Θ

e . (4.66)

η can be set once and for all (usually to 10−3).

4.11.5 Adadelta

Adadelta[13] is an extension of RMSprop, that aims at getting rid of the η
parameter. To do so, a new vector update is introduced

me = γme−1 + (1− γ)

(√
me−1 + ε√

ve + ε
∆Θ

e

)2

, (4.67)

32 CHAPTER 4. FEEDFORWARD NEURAL NETWORKS

and the new update rule for the weights reads

Θe = Θe−1 −
√

me−1 + ε√
ve + ε

∆Θ
e . (4.68)

The learning rate has been completely eliminated from the update rule, but
the procedure for doing so is ad hoc. The next and last optimization technique
presented seems more natural and is the default choice on a number of deep
learning algorithms.

4.11.6 Adam
Adam[14] keeps track of both the gradient and its square via two epoch

dependent vectors

me = β1me−1 + (1− β1)∆Θ
e , ve = β2ve + (1− β2)

(
∆Θ

e

)2
, (4.69)

with β1 and β2 parameters usually respectively set to 0.9 and 0.999. But the
robustness and great strength of Adam is that it makes the whole learning
process weakly dependent of their precise value. To avoid numerical problems
during the first steps, these vector are rescaled

m̂e =
me

1− βe
1

, v̂e =
ve

1− βe
2

. (4.70)

before entering into the update rule

Θe = Θe−1 −
η√

v̂e + ε
m̂e . (4.71)

This is the optimization technique implicitly used throughout this note, along-
side with a learning rate decay

ηe = e−α0ηe−1 , (4.72)

α0 determined by cross-validation, and η0 usually initialized in the range 10−3−
10−2.

4.12 Weight initialization

Without any regularization, training a neural network can be a daunting
task because of the fine-tuning of the weight initial conditions. This is one

4.A. BACKPROP THROUGH THE OUTPUT LAYER 33

of the reasons why neural networks have experienced out of mode periods.
Since dropout and Batch normalization, this issue is less pronounced, but one
should not initialize the weight in a symmetric fashion (all zero for instance),
nor should one initialize them too large. A good heuristic is

[
Θ(ν) f ′

f

]
init

=

√
6

Fi + Fi+1
×N (0, 1) . (4.73)

Appendix

4.A Backprop through the output layer

Recalling the MSE loss function

J(Θ) =
1

2Tmb

Tmb−1

∑
t=0

FN−1

∑
f=0

(
y(t)f − h(t)(N)

f

)2
, (4.74)

we instantaneously get

δ
(t)(N−1)
f =

1
Tmb

(
h(t)(N)

f − y(t)f

)
. (4.75)

Things are more complicated for the cross-entropy loss function of a regression
problem transformed into a multi-classification task. Assuming that we have
C classes for all the values that we are trying to predict, we get

δ
(t)(N−1)
f c =

∂

∂a(t)(N−1)
f c

J(Θ) =
Tmb−1

∑
t′=0

FN−1

∑
f ′=0

C−1

∑
d=0

∂h(t
′)(N)

f ′d

∂a(t)(N−1)
f c

∂

∂h(t
′)(N)

f ′d

J(Θ) . (4.76)

Now

∂

∂h(t
′)(N)

f ′d

J(Θ) = −
δd

y(t
′)

f ′

Tmbh(t
′)(N)

f ′d

, (4.77)

and

∂h(t
′)(N)

f ′d

∂a(t)(N−1)
f c

= δ
f
f ′δ

t
t′

(
δc

dh(t)(N)
f c − h(t)(N)

f c h(t)(N)
f d

)
, (4.78)

34 CHAPTER 4. FEEDFORWARD NEURAL NETWORKS

so that

δ
(t)(N−1)
f c = − 1

Tmb

C−1

∑
d=0

δd
y(t)f

h(t)(N)
f d

(
δc

dh(t)(N)
f c − h(t)(N)

f c h(t)(N)
f d

)
=

1
Tmb

(
h(t)(N)

f c − δc
y(t)f

)
. (4.79)

For a true classification problem, we easily deduce

δ
(t)(N−1)
f c =

1
Tmb

(
h(t)(N)

f − δ
f
y(t)

)
. (4.80)

4.B Backprop through hidden layers

To go further we need

δ
(t)(ν)
f =

∂

∂a(t)(ν)f

J(t)(Θ) =
Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

∂a(t
′)(ν+1)

f ′

∂a(t)(ν)f

δ
(t′)(ν+1)
f ′

=
Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Fν

∑
f ′′=0

Θ(ν+1) f ′

f ′′
∂y(t

′)(ν)
f ′′

∂a(t)(ν)f

δ
(t′)(ν+1)
f ′

=
Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Fν

∑
f ′′=0

Θ(ν+1) f ′

f ′′
∂y(t

′)(ν)
f ′′

∂h(t)(ν+1)
f

g′
(

a(t)(ν)f

)
δ
(t′)(ν+1)
f ′ , (4.81)

so that

δ
(t)(ν)
f = g′

(
a(t)(ν)f

) Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Θ(ν+1) f ′

f J(tt
′)(ν)

f δ
(t)(ν+1)
f ′ , (4.82)

4.C Backprop through BatchNorm

We saw in section 4.9.1 that batch normalization implies among other things
to compute the following gradient.

∂y(t
′)(ν)

f ′

∂h(t)(ν+1)
f

= γ
(ν)
f

∂h̃(t)(ν)f ′

∂h(t)(ν+1)
f

. (4.83)

4.D. FNN RESNET (NON STANDARD PRESENTATION) 35

We propose to do just that in this section. Firstly

∂h(t
′)(ν+1)

f ′

∂h(t)(ν+1)
f

= δt′
t δ

f ′

f ,
∂ĥ(ν)f ′

∂h(t)(ν+1)
f

=
δ

f ′

f

Tmb
. (4.84)

Secondly

∂
(

σ̂
(ν)
f ′

)2

∂h(t)(ν+1)
f

=
2δ

f ′

f

Tmb

(
h(t)(ν+1)

f − ĥ(ν)f

)
, (4.85)

so that we get

∂h̃(t)(ν)f ′

∂h(t)(ν+1)
f

=
δ

f ′

f

Tmb

 Tmbδt′
t − 1((

σ̂
(ν)
f

)2
+ ε

) 1
2
−

(
h(t
′)(ν+1)

f − ĥ(ν)f

) (
h(t)(ν+1)

f − ĥ(ν)f

)
((

σ̂
(ν)
f

)2
+ ε

) 3
2


=

δ
f ′

f((
σ̂
(ν)
f

)2
+ ε

) 1
2

δt′
t −

1 + h̃(t
′)(ν)

f h̃(t)(ν)f

Tmb

 . (4.86)

To ease the notation recall that we denoted

γ̃
(ν)
f =

γ
(ν)
f((

σ̂
(ν)
f

)2
+ ε

) 1
2

. (4.87)

so that

∂y(t)(ν)f ′

∂h(t)(ν+1)
f

= γ̃
(ν)
f δ

f ′

f

δt′
t −

1 + h̃(t
′)(ν)

f h̃(t)(ν)f

Tmb

 . (4.88)

4.D FNN ResNet (non standard presentation)

The state of the art architecture of convolutional neural networks (CNN,
to be explained in chapter 5) is called ResNet[5]. Its name comes from its
philosophy: each hidden layer output y of the network is a small – hence the

36 CHAPTER 4. FEEDFORWARD NEURAL NETWORKS

term residual – modification of its input (y = x + F(x)), instead of a total
modification (y = H(x)) of its input x. This philosophy can be imported to
the FNN case. Representing the operations of weight averaging, activation
function and batch normalization in the following way

full ∗
Relu
BN

= full

Figure 4.9: Schematic representation of one FNN fully connected layer.

In its non standard form presented in this section, the residual operation
amounts to add a skip connection to two consecutive full layers

Input

full ∗
Relu
BN

full ∗
Relu
BN

+
Output

= Res

Figure 4.10: Residual connection in a FNN.

Mathematically, we had before (calling the input y(t)(ν−1))

y(t)(ν+1)
f = γ

(ν+1)
f h̃(t)(ν+2)

f + β
(ν+1)
f , a(t)(ν+1)

f =
Fν−1

∑
f ′=0

Θ(ν+1) f
f ′ y(t)(ν)f

y(t)(ν)f = γ
(ν)
f h̃(t)(ν+1)

f + β
(ν)
f , a(t)(ν)f =

Fν−1−1

∑
f ′=0

Θ(ν) f
f ′ y(t)(ν−1)

f , (4.89)

as well as h(t)(ν+2)
f = g

(
a(t)(ν+1)

f

)
and h(t)(ν+1)

f = g
(

a(t)(ν)f

)
. In ResNet, we

now have the slight modification

y(t)(ν+1)
f = γ

(ν+1)
f h̃ν+2

f + β
(ν+1)
f + y(t)(ν−1)

f . (4.90)

The choice of skipping two and not just one layer has become a standard for
empirical reasons, so as the decision not to weight the two paths (the trivial

4.D. FNN RESNET (NON STANDARD PRESENTATION) 37

skip one and the two FNN layer one) by a parameter to be learned by back-
propagation

y(t)(ν+1)
f = α

(
γ
(ν+1)
f h̃(t)(ν+2)

f + β
(ν+1)
f

)
+ (1− α) y(t)(ν−1)

f ′ . (4.91)

This choice is called highway nets[15], and it remains to be theoretically un-
derstood why it leads to worse performance than ResNet, as the latter is a
particular instance of the former. Going back to the ResNet backpropagation
algorithm, this changes the gradient through the skip connection in the follow-
ing way

δ
(t)(ν−1)
f =

Tmb−1

∑
t′=0

Fν−1

∑
f ′=0

∂a(t
′)(ν)

f ′

∂a(t)(ν−1)
f

δ
(t′)(ν)
f ′ +

Tmb−1

∑
t′=0

Fν+2−1

∑
f ′=0

∂a(t
′)(ν+2)

f ′

∂a(t)(ν−1)
f

δ
(t′)(ν+2)
f ′

=
Tmb−1

∑
t′=0

Fν−1

∑
f ′=0

Fν−1−1

∑
f ′′=0

Θ(ν) f ′

f ′′
∂y(t

′)(ν−1)
f ′′

∂a(t)(ν−1)
f

δ
(t′)(ν)
f ′

+
Tmb−1

∑
t′=0

Fν+2−1

∑
f ′=0

Fν−1−1

∑
f ′′=0

Θ(ν+2) f ′

f ′′
∂y(t

′)(ν+1)
f ′′

∂a(t)(ν−1)
f

δ
(t′)(ν+2)
f ′

= g′
(

a(t)(ν−1)
f

) Tmb−1

∑
t′=0

Fν−1

∑
f ′=0

Fν−1−1

∑
f ′′=0

Θ(ν) f ′

f ′′ J(tt
′)(ν)

f δ
(t′)(ν)
f ′

+ g′
(

a(t)(ν−1)
f

) Tmb−1

∑
t′=0

Fν+2−1

∑
f ′=0

Fν−1−1

∑
f ′′=0

Θ(ν+2) f ′

f ′′ J(tt
′)(ν)

f δ
(t′)(ν+2)
f ′ , (4.92)

so that

δ
(t)(ν−1)
f = g′

(
a(t)(ν−1)

f

) Tmb−1

∑
t′=0

Fν−1−1

∑
f ′′=0

J(tt
′)(ν)

f

×
[

Fν−1

∑
f ′=0

Θ(ν) f ′

f ′′ δ
(t′)(ν)
f ′ +

Fν+2−1

∑
f ′=0

Θ(ν+2) f ′

f ′′ δ
(t′)(ν+2)
f ′

]
. (4.93)

This formulation has one advantage: it totally preserves the usual FNN
layer structure of a weight averaging (WA) followed by an activation function
(AF) and then a batch normalization operation (BN). It nevertheless has one
disadvantage: the backpropagation gradient does not really flow smoothly
from one error rate to the other. In the following section we will present the
standard ResNet formulation of that takes the problem the other way around
: it allows the gradient to flow smoothly at the cost of "breaking" the natural
FNN building block.

38 CHAPTER 4. FEEDFORWARD NEURAL NETWORKS

4.E FNN ResNet (more standard presentation)

Input

Relu
BN

full ∗
Relu
BN

full ∗

+
Output

= Res

Figure 4.11: Residual connection in a FNN, trivial gradient flow through error
rates.

In the more standard form of ResNet, the skip connections reads

a(t)(ν+2)
f = a(t)(ν+2)

f + a(t)(ν)f , (4.94)

and the updated error rate reads

δ
(t)(ν)
f = g′

(
a(t)(ν)f

) Tmb−1

∑
t′=0

Fν−1

∑
f ′′=0

J(tt
′)(ν)

f

Fν+1−1

∑
f ′=0

Θ(ν+1) f ′

f ′′ δ
(t′)(ν+1)
f ′ + δ

(t′)(ν+2)
f .

(4.95)

4.F Matrix formulation

In all this chapter, we adopted an "index" formulation of the FNN. This
has upsides and downsides. On the positive side, one can take the formula
as written here and go implement them. On the downside, they can be quite
cumbersome to read.

Another FNN formulation is therefore possible: a matrix one. To do so, one
has to rewrite

h(t)(ν)f 7→ h(ν)f t 7→ h(ν) ∈ M(Fν, Tmb) . (4.96)

In this case the weight averaging procedure (4.18) can be written as

a(t)(ν)f =
Fν−1

∑
f ′=0

Θ(ν) f
f ′ h(ν)f ′t 7→ a(ν) = Θ(ν)h(ν) . (4.97)

4.F. MATRIX FORMULATION 39

The upsides and downsides of this formulation are the exact opposite of the
index one: what we gained in readability, we lost in terms of direct implemen-
tation in low level programming languages (C for instance). For FNN, one can
use a high level programming language (like python), but this will get quite
intractable when we talk about Convolutional networks. Since the whole point
of the present work was to introduce the index notation, and as one can easily
find numerous derivation of the backpropagation update rules in matrix form,
we will stick with the index notation in all the following, and now turn our
attention to convolutional networks.

40 CHAPTER 4. FEEDFORWARD NEURAL NETWORKS

Chapter 5

InputConvolutionLayer

...

N+2P

T+2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

OutputConvolutionLayer

...

Np

Tp

Fp Convolutional Neural Networks Input Convolution Layer

...

N + 2P

T + 2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

Output Convolution Layer

...

Np

Tp

Fp

Contents
5.1 Introduction . 39

5.2 CNN architecture . 39

5.3 CNN specificities . 40

5.3.1 Feature map . 40

5.3.2 Input layer . 40

5.3.3 Padding . 41

5.3.4 Convolution . 42

5.3.5 Pooling . 44

5.3.6 Towards fully connected layers 45

5.3.7 fully connected layers . 45

5.3.8 Output connected layer 46

5.4 Modification to Batch Normalization 46

5.5 Network architectures . 47

5.5.1 Realistic architectures . 48

5.5.2 LeNet . 49

5.5.3 AlexNet . 49

5.5.4 VGG . 50

5.5.5 GoogleNet . 50

5.5.6 ResNet . 51

5.6 Backpropagation . 53

41

42 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

5.6.1 Backpropagate through Batch Normalization 54

5.6.2 Error updates . 54

5.6.3 Weight update . 57

5.6.4 Coefficient update . 59

Appendices . 61

5.A Backprop through BatchNorm 61

5.B Error rate updates: details . 62

5.C Weight update: details . 64

5.D Coefficient update: details . 65

5.E Practical Simplification . 65

5.E.1 pool to conv Simplification 66

5.E.2 Convolution Simplification 67

5.E.3 Coefficient Simplification 68

5.F Batchpropagation through a ResNet module 68

5.G Convolution as a matrix multiplication 69

5.G.1 2D Convolution . 70

5.G.2 4D Convolution . 71

5.H Pooling as a row matrix maximum 72

5.1 Introduction

I
n this chapter we review a second type of neural network that is
presumably the most popular one: Convolutional Neural Networks
(CNN). CNN are particularly adapted for image classification, be it
numbers or animal/car/... category. We will review the novelty in-

volved when dealing with CNN when compared to FNN. Among them are
the fundamental building blocks of CNN: convolution and pooling. We will
in addition see what modification have to be taken into account for the regu-
larization techniques introduced in the FNN part. Finally, we will present the
most common CNN architectures that are used in the literature: from LeNet
to ResNet.

5.2. CNN ARCHITECTURE 43

5.2 CNN architecture

A CNN is formed by several convolution and pooling operations, usually
followed by one or more fully connected layers (those being similar to the
traditional FNN layers). We will clarify the new terms introduced thus far in
the following sections.

...

N0

T0

F0

R0

R0

S0

..
..
..
.

F1

..

...
S1

R1

R1

N1

T1

F1

...
S2

R2

R2

N2

T2

F2

..

..

..

.
F3

..

......
T3

N3

F3
bias

......
F4

......

..

..F5

......

......
F5

Figure 5.1: A typical CNN architecture (in this case LeNet inspired): convo-
lution operations are followed by pooling operations, until the size of each
feature map is reduced to one. Fully connected layers can then be introduced.

5.3 CNN specificities

5.3.1 Feature map

In each layer of a CNN, the data are no longer labeled by a single index
as in a FNN. One should see the FNN index as equivalent to the label of
a given image in a layer of a CNN. This label is the feature map. In each
feature map f ∈ J0, Fν − 1K of the ν’th layer, the image is fully characterized
by two additional indices corresponding to its height k ∈ Tν − 1 and its width
j ∈ Nν − 1. A given f , j, k thus characterizes a unique pixel of a given feature
map. Let us now review the different layers of a CNN

5.3.2 Input layer

We will be considering a input of F0 channels. In the standard image treat-
ment, these channels can correspond to the RGB colors (F0 = 3). Each image
in each channel will be of size N0 × T0 (width×height). The input will be de-
noted X(t)

f j k, with t ∈ J0, Tmb − 1K (size of the Mini-batch set, see chapter 4),
j ∈ J0, N0 − 1K and k ∈ J0, T0 − 1K. A standard input treatment is to center the

44 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

data following either one of the two following procedure

X̃(t)
f j k = X(t)

i j k − µ f , X̃(t)
f j k = X(t)

i j k − µ f j k (5.1)

with

µ f =
1

TtrainT0N0

Ttrain−1

∑
t=0

N0−1

∑
j

T0−1

∑
k

X(t)
f j k , (5.2)

µ f j k =
1

Ttrain

Ttrain−1

∑
t=0

X(t)
f j k . (5.3)

This correspond to either compute the mean per pixel over the training set, or
to also average over every pixel. This procedure should not be followed for
regression tasks. To conclude, figure 5.2 shows what the input layer looks like.

Input Layer

...

N0

T0

F0

Figure 5.2: The Input layer

5.3.3 Padding

As we will see when we proceed, it may be convenient to "pad" the feature
maps in order to preserve the width and the height of the images though
several hidden layers. The padding operation amounts to add 0’s around the
original image. With a padding of size P, we add P zeros at the beginning
of each row and column of a given feature map. This is illustrated in the
following figure

5.3. CNN SPECIFICITIES 45

Padding

...

N + 2P

T + 2P

F

Figure 5.3: Padding of the feature maps. The zeros added correspond to the
red tiles, hence a padding of size P = 1.

5.3.4 Convolution

The convolution operation that gives its name to the CNN is the fundamen-
tal building block of this type of network. It amounts to convolute a feature
map of an input hidden layer with a weight matrix to give rise to an output
feature map. The weight is really a four dimensional tensor, one dimension (F)
being the number of feature maps of the convolutional input layer, another (Fp)
the number of feature maps of the convolutional output layer. The two others
gives the size of the receptive field in the width and the height direction. The
receptive field allows one to convolute a subset instead of the whole input im-
age. It aims at searching similar patterns in the input image, no matter where
the pattern is (translational invariance). The width and the height of the output
image are also determined by the stride: it is simply the number of pixel by
which one slides in the vertical and/or the horizontal direction before apply-
ing again the convolution operation. A good picture being worth a thousand
words, here is the convolution operation in a nutshell

46 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

Input Convolution Layer

...

N + 2P

T + 2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

Output Convolution Layer

...

Np

Tp

Fp

Figure 5.4: The convolution operation

Here RC is the size of the convolutional receptive field (we will see that the
pooling operation also has a receptive field and a stride) and SC the convolu-
tional stride. The widths and heights of the output image can be computed
thanks to the input height T and output width N

Np =
N + 2P− RC

SC
+ 1 , Tp =

T + 2P− RC

SC
+ 1 . (5.4)

It is common to introduce a padding to preserve the widths and heights of the
input image N = Np = T = Tp, so that in these cases SC = 1 and

P =
RC − 1

2
. (5.5)

For a given layer n, the convolution operation mathematically reads (similar in
spirit to the weight averaging procedure of a FNN)

a(t)(ν)f l m =
Fν−1

∑
ν=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f
f j k h(t)(ν)f SC l+j SCm+k , (5.6)

where o characterizes the o + 1 convolution in the network. Here ν denotes
the ν’th hidden layer of the network (and thus belongs to J0, N − 1K), and
f ∈ J0, Fν+1 − 1K, l ∈ J0, Nν+1 − 1K and m ∈ J0, Tν+1 − 1K. Thus SCl + j ∈
J0, Nν − 1K and SCl + j ∈ J0, Tν − 1K. One then obtains the hidden units via a
ReLU (or other, see chapter 4) activation function application. Taking padding
into account, it reads

h(t)(ν+1)
f l+P m+P = g

(
a(t)(ν)f l m

)
. (5.7)

5.3. CNN SPECIFICITIES 47

5.3.5 Pooling

The pooling operation, less and less used in the current state of the art
CNN, is fundamentally a dimension reduction operation. It amounts either to
average or to take the maximum of a sub-image – characterized by a pooling
receptive field RP and a stride SP – of the input feature map F to obtain an
output feature map Fp = F of width Np < N and height Tp < T. To be noted:
the padded values of the input hidden layers are not taken into account during
the pooling operation (hence the +P indices in the following formulas)

Input Pooling layer

...
SP

RP

RP

N

T

F

Output Pooling layer

...

Np

Tp

F

Figure 5.5: The pooling operation

The average pooling procedure reads for a given ν’th pooling operation

a(t)(ν)f l m =
RP−1

∑
j,k=0

h(t)(ν)f SPl+j+P SPm+k+P , (5.8)

while the max pooling reads

a(t)(ν)f l m =
RP−1
max
j,k=0

h(t)(ν)f SPl+j+P SPm+k+P . (5.9)

Here ν denotes the ν’th hidden layer of the network (and thus belongs to
J0, N − 1K), and f ∈ J0, Fν+1 − 1K, l ∈ J0, Nν+1 − 1K and m ∈ J0, Tν+1 − 1K.
Thus SPl + j ∈ J0, Nν − 1K and SPl + j ∈ J0, Tν − 1K. Max pooling is exten-
sively used in the literature, and we will therefore adopt it in all the following.
Denoting j(t)(p)

f lm , k(t)(p)
f lm the indices at which the l, m maximum of the f feature

map of the t’th batch sample is reached, we have

h(t)(ν+1)
f l+P m+P = a(t)(ν)f l m = h(t)(ν)

f SPl+j(t)(p)
f lm +P SPm+k(t)(p)

f lm +P
. (5.10)

48 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

5.3.6 Towards fully connected layers

At some point in a CNN the convolutional receptive field is equal to the
width and the height of the input image. In this case, the convolution operation
becomes a kind of weight averaging procedure (as in a FNN)

Input Pooling layer

......
T

N

F

Fully Connected layer

......
Fp

Figure 5.6: Fully connected operation to get images of width and height 1.

This weight averaging procedure reads

a(t)(ν)f =
Fν−1

∑
f ′=0

N−1

∑
l=0

T−1

∑
m=0

Θ(o) f
f ′lmh(t)(ν)f ′l+Pm+P , (5.11)

and is followed by the activation function

h(t)(ν+1)
f = g

(
a(t)(ν)f

)
, (5.12)

5.3.7 fully connected layers

After the previous operation, the remaining network is just a FNN one. The
weigh averaging procedure reads

a(t)(ν)f =
Fν−1

∑
f ′=0

Θ(o) f
f ′ h(t)(ν)f ′ , (5.13)

and is followed as usual by the activation function

h(t)(ν+1)
f = g

(
a(t)(ν)f

)
, (5.14)

5.4. MODIFICATION TO BATCH NORMALIZATION 49

Input Fully connected

bias

......F

Weights

......

..

..Fp

......

Output Fully connected

......
Fp

Figure 5.7: Fully connected operation, identical to the FNN operations.

5.3.8 Output connected layer

Finally, the output is computed as in a FNN

a(t)(N−1)
f =

FN−1

∑
f ′=0

Θ(o) f
f ′ h(t)(N−1)

f ′ , h(t)(N)
f = o

(
a(t)(N−1)

f

)
, (5.15)

where as in a FNN, o is either the L2 or the cross-entropy loss function (see
chapter 4).

5.4 Modification to Batch Normalization

In a CNN, Batch normalization is modified in the following way (here, con-
trary to a regular FNN, not all the hidden layers need to be Batch normalized.
Indeed this operation is not performed on the output of the pooling layers. We
will hence use different names ν and n for the regular and batch normalized
hidden layers)

h̃(t)(n)f l m =
h(t)(ν)f l m − ĥ(n)f√(

σ̂
(n)
f

)2
+ ε

, (5.16)

50 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

with

ĥ(n)f =
1

TmbNnTn

Tmb−1

∑
t=0

Nn−1

∑
l=0

Tn−1

∑
m=0

h(t)(ν)f l m (5.17)

(
σ̂
(n)
f

)2
=

1
TmbNnTn

Tmb−1

∑
t=0

Nn−1

∑
l=0

Tn−1

∑
m=0

(
h(t)(ν)f l m − ĥ(n)f

)2
. (5.18)

The identity transform can be implemented thanks to the two additional pa-
rameters (γ f , β f)

y(t)(n)f l m = γ
(n)
f h̃(t)(n)f l m + β

(n)
f . (5.19)

For the evaluation of the cross-validation and the test set (calling e the number
of iterations/epochs), one has to compute

E
[

h(t)(ν)f l m

]
e+1

=
eE
[

h(t)(ν)f l m

]
e
+ ĥ(n)f

e + 1
, (5.20)

Var
[

h(t)(ν)f l m

]
e+1

=
iVar

[
h(t)(ν)f l m

]
e
+
(

σ̂
(n)
f

)2

e + 1
(5.21)

and what will be used at test time is E
[

h(t)(ν)f l m

]
and Tmb

Tmb−1Var
[

h(t)(ν)f l m

]
.

5.5 Network architectures

We will now review the standard CNN architectures that have been used in
the literature in the past 20 years, from old to very recent (end of 2015) ones.
To allow for an easy graphical representation, we will adopt the following
schematic representation of the different layers.

5.5. NETWORK ARCHITECTURES 51

Input Layer

...

N0

T0

F0

=

I
n
p
u
t

,

Input Convolution Layer

...

N + 2P

T + 2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

Output Convolution Layer

...

Np

Tp

Fp

=
C
o
n
v

,

Input Pooling layer

...
SP

RP

RP

N

T

F

Output Pooling layer

...

Np

Tp

F

=
P
o
o
l

,

Input Fully connected

bias

......F

Weights

......

..

..Fp

......

Output Fully connected

......
Fp

=
F
u
l
l

Figure 5.8: Schematic representation of the different layer

5.5.1 Realistic architectures

In realistic architectures, every fully connected layer (except the last one
related to the output) is followed by a ReLU (or other) activation and then a
batch normalization step (these two data processing steps can be inverted, as
it was the case in the original BN implementation).

full ∗
Relu
BN

= full

Figure 5.9: Realistic Fully connected operation

The same holds for convolutional layers

Conv ∗
Relu
BN

= Conv

Figure 5.10: Realistic Convolution operation

52 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

We will adopt the simplified right hand side representation, keeping in
mind that the true structure of a CNN is richer. With this in mind – and
mentioning in passing [16] that details recent CNN advances, let us now turn
to the first popular CNN used by the deep learning community.

5.5.2 LeNet

The LeNet[3] (end of the 90’s) network is formed by an input, followed by
two conv-pool layers and then a fully-connected layer before the final output.
It can be seen in figure 5.1

I
n
p
u
t

C
o
n
v

P
o
o
l

C
o
n
v

P
o
o
l

F
u
l
l

O
u
t
p
u
t

Figure 5.11: The LeNet CNN

When treating large images (224 × 224), this implies to use large size of
receptive fields and strides. This has two downsides. Firstly, the number or
parameter in a given weight matrix is proportional to the size of the receptive
field, hence the larger it is the larger the number of parameter. The network can
thus be more prone to overfit. Second, a large stride and receptive field means
a less subtle analysis of the fine structures of the images. All the subsequent
CNN implementations aim at reducing one of these two issues.

5.5.3 AlexNet

The AlexNet[17] (2012) saw no qualitative leap in the CNN theory, but due
to better processors was able to deal with more hidden layers.

I
n
p
u
t

C
o
n
v

P
o
o
l

C
o
n
v

P
o
o
l

C
o
n
v

C
o
n
v

C
o
n
v

P
o
o
l

F
u
l
l

F
u
l
l

F
u
l
l

O
u
t
p
u
t

Figure 5.12: The AlexNet CNN

5.5. NETWORK ARCHITECTURES 53

This network is still commonly used, though less since the arrival of the
VGG network.

5.5.4 VGG

The VGG[4] network (2014) adopted a simple criteria: only 2× 2 paddings
of stride 2 and 3× 3 convolutions of stride 1 with a padding of size 1, hence
preserving the size of the image’s width and height through the convolution
operations.

I
n
p
u
t

C
o
n
v

C
o
n
v

P
o
o
l

C
o
n
v

C
o
n
v

P
o
o
l

C
o
n
v

C
o
n
v

C
o
n
v

P
o
o
l

C
o
n
v

C
o
n
v

C
o
n
v

P
o
o
l

C
o
n
v

C
o
n
v

C
o
n
v

P
o
o
l

F
u
l
l

F
u
l
l

F
u
l
l

O
u
t
p
u
t

Figure 5.13: The VGG CNN

This network is the standard one in most of the deep learning packages
dealing with CNN. It is no longer the state of the art though, as a design
innovation has taken place since its creation.

5.5.5 GoogleNet

The GoogleNet[18] introduced a new type of "layer" (which is in reality a
combination of existing layers): the inception layer (in reference to the movie
by Christopher Nolan). Instead of passing from one layer of a CNN to the
next by a simple pool, conv or fully-connected (fc) operation, one averages the
result of the following architecture.

Input

Conv PoolConvConv

ConvConvConv

Concat

= Incep

Figure 5.14: The Inception module

54 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

We won’t enter into the details of the concat layer, as the Google Net illus-
trated on the following figure is (already!) no longer state of the art.

I
n
p
u
t

C
o
n
v

P
o
o
l

C
o
n
v

C
o
n
v

P
o
o
l

I
n
c
e
p

I
n
c
e
p

P
o
o
l

I
n
c
e
p

I
n
c
e
p

I
n
c
e
p

I
n
c
e
p

I
n
c
e
p

P
o
o
l

I
n
c
e
p

I
n
c
e
p

P
o
o
l

F
u
l
l

O
u
t
p
u
t

Figure 5.15: The GoogleNet CNN

Indeed, the idea of averaging the result of several conv-pool operations to
obtain the next hidden layer of a CNN as been exploited but greatly simplified
by the state of the art CNN : The ResNet.

5.5.6 ResNet

Input

Conv 1

Conv 3

Conv 1

Output

+

= Res

Input

Conv 1
Relu 1
BN 1

Conv 2
Relu 2
BN 2

Conv 3
Relu 3
BN 3

Output
+

= Res

Figure 5.16: The Bottleneck Residual architecture. Schematic representation
on the left, realistic one on the right. It amounts to a 1× 1 conv of stride 1
and padding 0, then a standard VGG conv and again a 1× 1 conv. Two main
modifications in our presentation of ResNet: BN operations have been put after
ReLU ones, and the final ReLU is before the plus operation.

The ResNet[5] takes back the simple idea of the VGG net to always use
the same size for the convolution operations (except for the first one). It also

5.5. NETWORK ARCHITECTURES 55

takes into account an experimental fact: the fully connected layer (that usually
contains most of the parameters given their size) are not really necessary to
perform well. Removing them leads to a great decrease of the number of
parameters of a CNN. In addition, the pooling operation is also less and less
popular and tend to be replaced by convolution operations. This gives the basic
ingredients of the ResNet fundamental building block, the Residual module of
figure 5.16.

Two important points have to be mentioned concerning the Residual mod-
ule. Firstly, a usual conv-conv-conv structure would lead to the following out-
put (forgetting about batch normalization for simplicity and only for the time
being, and denoting that there is no need for padding in 1 × 1 convolution
operations)

h(t)(1)f l+Pm+P = g

(
F0−1

∑
f ′=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(0) f
f ′ j kh(t)(0)f ′ SC l+j SCm+k

)

h(t)(2)f lm = g

(
F1−1

∑
f ′=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(0) f
f ′ j kh(t)(1)f ′ SC l+j SCm+k

)

h(t)(3)f lm = g

(
F2−1

∑
f ′=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(0) f
f ′ j kh(t)(2)f ′ SC l+j SCm+k

)
, (5.22)

whereas the Residual module modifies the last previous equation to (implying
that the width, the size and the number of feature size of the input and the
output being the same)

h(t)(4)f lm = h(t)(0)f lm + g

(
F2−1

∑
f ′=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(0) f
f ′ j kh(t)(2)f ′ SC l+j SCm+k

)
= h(t)(0)f lm + δh(t)(0)f lm . (5.23)

Instead of trying to fit the input, one is trying to fit a tiny modification of the
input, hence the name residual. This allows the network to minimally modify
the input when necessary, contrary to traditional architectures. Secondly, if the
number of feature maps is important, a 3× 3 convolution with stride 1 could
be very costly in term of execution time and prone to overfit (large number
of parameters). This is the reason of the presence of the 1 × 1 convolution,
whose aim is just to prepare the input to the 3× 3 conv to reduce the number
of feature maps, number which is then restored with the final 1× 1 conv of the
Residual module. The first 1× 1 convolution thus reads as a weight averaging

56 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

operation

h(t)(1)f l+Pm+P = g

(
F0−1

∑
f ′=0

Θ(0) f
f ′ h(t)(0)f ′ l m

)
, (5.24)

but is designed such that f ∈ F1 � F0. The second 1× 1 convolution reads

h(t)(3)f lm = g

(
F1−1

∑
i=0

Θ(2) f
i h(t)(1)i l m

)
, (5.25)

with f ∈ F0, restoring the initial feature map size. The ResNet architecture is
then the stacking of a large number (usually 50) of Residual modules, preceded
by a conv-pool layer and ended by a pooling operation to obtain a fully con-
nected layer, to which the output function is directly applied. This is illustrated
in the following figure.

I
n
p
u
t

C
o
n
v

P
o
o
l

P
o
o
l

O
u
t
p
u
t

Figure 5.17: The ResNet CNN

The ResNet CNN has accomplished state of the art results on a number
of popular training sets (CIFAR, MNIST...). In practice, we will present in the
following the backpropagation algorithm for CNN having standard (like VGG)
architectures in mind.

5.6 Backpropagation

In a FNN, one just has to compute two kind of backpropagations : from
output to fully connected (fc) layer and from fc to fc. In a traditional CNN, 4
new kind of propagations have to be computed: fc to pool, pool to conv, conv
to conv and conv to pool. We present the corresponding error rates in the next
sections, postponing their derivation to the appendix. We will consider as in
a FNN a network with an input layer labelled 0, N-1 hidden layers labelled i
and an output layer labelled N (N + 1 layers in total in the network).

5.6. BACKPROPAGATION 57

5.6.1 Backpropagate through Batch Normalization
As in FNN, backpropagation introduces a new gradient

δ
f
f ′ J

(tt′)(n)
f ll′mm′ =

∂y(t
′)(n)

f ′ l′ m′

∂h(t)(ν)f l m

. (5.26)

we show in appendix 5.A that for pool and conv layers

J(tt
′)(n)

f ll′mm′ = γ̃
(n)
f

δt′
t δl′

l δm′
m −

1 + h̃(t
′)(n)

f l′ m′ h̃(t)(n)f l m

TmbNnTn

 , (5.27)

while we find the FNN result as expected for fc layers

J(tt
′)(n)

f = γ̃
(n)
f

δt′
t −

1 + h̃(t
′)(n)

f h̃(t)(n)f

Tmb

 . (5.28)

5.6.2 Error updates

We will call the specific CNN error rates (depending on whether we need
padding or not)

δ
(t)(ν)
f l(+P)m(+P) =

∂

∂a(t)(i)f l m

J(Θ) , (5.29)

5.6.2.1 Backpropagate from output to fc

Backpropagate from output to fc is schematically illustrated on the follow-
ing plot

O
u
t
p
u
t

F
u
l
l

Figure 5.18: Backpropagate from output to fc.

As in FNN, we find for the L2 loss function

δ
(t)(N−1)
f =

1
Tmb

(
h(t)(N)

f − y(t)f

)
, (5.30)

58 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

and for the cross-entropy one

δ
(t)(N−1)
f =

1
Tmb

(
h(t)(N)

f − δ
f
y(t)

)
, (5.31)

5.6.2.2 Backpropagate from fc to fc

Backpropagate from fc to fc is schematically illustrated on the following
plot

F
u
l
l

F
u
l
l

Figure 5.19: Backpropagate from fc to fc.

As in FNN, we find

δ
(t)(ν)
f = g′

(
a(t)(ν)f

) Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Θ(o) f ′

f J(tt
′)(n)

f δ
(t)(ν+1)
f ′ , (5.32)

5.6.2.3 Backpropagate from fc to pool

Backpropagate from fc to pool is schematically illustrated on the following
plot

F
u
l
l

P
o
o
l

Figure 5.20: Backpropagate from fc to pool.

We show in appendix 5.B that this induces the following error rate

δ
(t)(ν)
f lm =

Fν+1−1

∑
f ′=0

Θ(o) f ′

f l m δ
(t)(ν+1)
f ′ , (5.33)

5.6. BACKPROPAGATION 59

5.6.2.4 Backpropagate from pool to conv

Backpropagate from pool to conv is schematically illustrated on the follow-
ing plot

P
o
o
l

C
o
n
v

Figure 5.21: Backpropagate from pool to conv.

We show in appendix 5.A that this induces the following error rate (calling
the pooling layer the pth one)

δ
(t)(ν)
f l+Pm+P = g′

(
a(t)(ν)f l m

) Tmb−1

∑
t′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

δ
(t′)(ν+1)
f l′m′

× J(tt
′)(n)

f SPl′+j(t
′)(p)

f l′m′ +P SPm′+k(t
′)(p)

f l′m′ +P l+P m+P
. (5.34)

Note that we have padded this error rate.

5.6.2.5 Backpropagate from conv to conv

Backpropagate from conv to conv is schematically illustrated on the follow-
ing plot

C
o
n
v

C
o
n
v

Figure 5.22: Backpropagate from conv to conv.

We show in appendix 5.B that this induces the following error rate

δ
(t)(ν)
f l+Pm+P = g′

(
a(t)(ν)f l m

) Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

RC−1

∑
j=0

RC−1

∑
k=0

δ
(t′)(ν+1)
f ′l′+Pm′+P

×Θ(o) f ′

f j k J(tt
′)(n)

f SC l′+j SCm′+k l+P m+P (5.35)

Note that we have padded this error rate.

60 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

5.6.2.6 Backpropagate from conv to pool

Backpropagate from conv to pool is schematically illustrated on the follow-
ing plot

C
o
n
v

P
o
o
l

Figure 5.23: Backpropagate from conv to pool.

We show in appendix 5.B that this induces the following error rate

δ
(t)(ν)
f lm =

Fν+1−1

∑
f ′=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f
f ′ j kδ

(t)(ν+1)

f l+P−j
SC

+P m+P−k
SC

+P
. (5.36)

5.6.3 Weight update

For the weight updates, we will also consider separately the weights be-
tween fc to fc layer, fc to pool, conv to conv, conv to pool and conv to input.

5.6.3.1 Weight update from fc to fc

For the two layer interactions

F
u
l
l

F
u
l
l

Figure 5.24: Weight update between two fc layers.

We have the weight update that reads

∆Θ(o) f
f ′ =

Tmb−1

∑
t=0

y(t)(n)f ′ δ
(t)(ν)
f (5.37)

5.6. BACKPROPAGATION 61

5.6.3.2 Weight update from fc to pool

For the two layer interactions

F
u
l
l

P
o
o
l

Figure 5.25: Weight update between a fc layer and a pool layer.

We have the weight update that reads

∆Θ(o) f
f ′ jk =

Tmb−1

∑
t=0

h(t)(ν)f ′ j+Pk+Pδ
(t)(ν)
f (5.38)

5.6.3.3 Weight update from conv to conv

For the two layer interactions

C
o
n
v

C
o
n
v

Figure 5.26: Weight update between two conv layers.

We have the weight update that reads

∆Θ(o) f
f ′ jk =

Tmb−1

∑
t=0

Tν+1−1

∑
l=0

Nν+1−1

∑
m=0

y(t)(n)f ′ l+j m+kδ
(t)(ν)
f l+P m+P (5.39)

5.6.3.4 Weight update from conv to pool and conv to input

For the two layer interactions

62 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

C
o
n
v

P
o
o
l

C
o
n
v

I
n
p
u
t

Figure 5.27: Weight update between a conv and a pool layer, as well as between
a conv and the input layer.

∆Θ(o) f
f ′ jk =

Tmb−1

∑
t=0

Tν+1−1

∑
l=0

Nν+1−1

∑
m=0

h(t)(ν)f ′ l+j m+kδ
(t)(ν)
f l+P m+P (5.40)

5.6.4 Coefficient update

For the Coefficient updates, we will also consider separately the weights
between fc to fc layer, fc to pool, cont to pool and conv to conv.

5.6.4.1 Coefficient update from fc to fc

For the two layer interactions

F
u
l
l

F
u
l
l

Figure 5.28: Coefficient update between two fc layers.

We have

∆γ(n)
f =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

Θ(o) f ′

f h̃(t)(n)f δ
(t)(ν)
f ′ ,

∆β(n)
f =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

Θ(o) f ′

f δ
(t)(ν)
f ′ , (5.41)

5.6. BACKPROPAGATION 63

5.6.4.2 Coefficient update from fc to pool and conv to pool

For the two layer interactions

F
u
l
l

P
o
o
l

C
o
n
v

P
o
o
l

Figure 5.29: Coefficient update between a fc layer and a pool as well as a conv
and a pool layer.

∆γ(n)
f =

Tmb−1

∑
t=0

Nν+1−1

∑
l=0

Tν+1−1

∑
m=0

h̃(t)(n)
f SPl+j(t)(p)

f lm +P SPm+k(t)(p)
f lm +P

δ
(t)(ν)
f lm ,

∆β(n)
f =

Tmb−1

∑
t=0

Nν+1−1

∑
l=0

Tν+1−1

∑
m=0

δ
(t)(ν)
f lm , (5.42)

5.6.4.3 Coefficient update from conv to conv

For the two layer interactions

C
o
n
v

C
o
n
v

Figure 5.30: Coefficient update between two conv layers.

We have

∆γ(n)
f =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l=0

Tν+1−1

∑
m=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f ′

f jk h̃(t)(n)f l+j m+kδ
(t)(ν)
f ′ l+P m+P ,

∆β(n)
f =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l=0

Tν+1−1

∑
m=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f ′

f jk δ
(t)(ν)
f ′ l+P m+P . (5.43)

Let us now demonstrate all these formulas!

64 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

Appendix

5.A Backprop through BatchNorm

For Backpropagation, we will need

∂y(t
′)(n)

f ′ l′ m′

∂h(t)(ν)f l m

= γ
(n)
f

∂h̃(t
′)(n)

f ′ l′ m′

∂h(t)(ν)f l m

. (5.44)

Since

∂h(t
′)(ν)

f ′ l′ m′

∂h(t)(ν)f l m

= δt′
t δ

f ′

f δl′
l δm′

m ,
∂ĥ(n)f ′

∂h(t)(ν)f l m

=
δ

f ′

f

TmbNnTn
; (5.45)

and

∂
(

σ̂
(n)
f ′

)2

∂h(t)(ν)f l m

=
2δ

f ′

f

TmbNnTn

(
h(t)(ν)f l m − ĥ(n)f

)
, (5.46)

we get

∂h̃(t
′)(n)

f ′ l′ m′

∂h(t)(ν)f l m

=
δ

f ′

f

TmbNnTn

TmbNnTnδt′
t δl′

l δm′
m − 1((

σ̂
(n)
f

)2
+ ε

) 1
2
−

(
h(t
′)(ν)

f l′ m′ − ĥ(n)f

) (
h(t)(ν)f l m − ĥ(n)f

)
((

σ̂
(n)
f

)2
+ ε

) 3
2


=

δ
f ′

f((
σ̂
(n)
f

)2
+ ε

) 1
2

δt′
t δl′

l δm′
m −

1 + h̃(t
′)(n)

f l′ m′ h̃(t)(n)f l m

TmbNnTn

 . (5.47)

To ease the notation we will denote

γ̃
(n)
f =

γ
(n)
f((

σ̂
(n)
f

)2
+ ε

) 1
2

. (5.48)

so that

δ
f
f ′ J

(tt′)(n)
f l m l′ m′ =

∂y(t
′)(n)

f ′ l′ m′

∂h(t)(ν)f l m

= γ̃
(n)
f δ

f ′

f

δt′
t δl′

l δm′
m −

1 + h̃(t
′)(n)

f l′ m′ h̃(t)(n)f l m

TmbNnTn

 . (5.49)

5.B. ERROR RATE UPDATES: DETAILS 65

5.B Error rate updates: details

We have for backpropagation from fc to pool

δ
(t)(ν)
f lm =

∂

∂a(t)(ν)f lm

J(t)(Θ) =
Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

∂a(t
′)(ν+1)

f ′

∂a(t)(ν)f lm

δ
(t′)(ν+1)
f ′

=
Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Fν−1

∑
f ′′=0

Nν+1

∑
j=0

Tν+1

∑
k=0

Θ(o) f ′

f ′′ j k

∂h(t)(ν+1)
f ′′ j+Pk+P

∂h(t)(ν+1)
f l+Pm+P

δ
(t′)(ν+1)
f ′

=
Fν+1−1

∑
f ′=0

Θ(o) f ′

f l m δ
(t)(ν+1)
f ′ , (5.50)

For backpropagation from pool to conv

δ
(t)(ν)
f l+Pm+P =

Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

∂a(t
′)(ν+1)

f ′l′m′

∂a(t)(ν)f l m

δ
(t′)(ν+1)
f ′l′m′ =

=
Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

∂y(t
′)(n)

f ′ SPl′+j(t
′)(p)

f ′ l′m′ +P SPm′+k(t
′)(p)

f ′ l′m′ +P

∂h(t)(ν+1)
f l+P m+P

g′
(

a(t)(ν)f l m

)
δ
(t′)(ν+1)
f ′l′m′

= γ̃
(n)
f g′

(
a(t)(ν)f l m

) Tmb−1

∑
t′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

δ
(t′)(ν+1)
f l′m′δt′

t δ
SPl′+j(p)

t′ f l′m′
l δ

SPm′+k(p)
t′ f l′m′

m −
1 + h̃(t

′)(n)

f SPl′+j(t
′)(p)

f l′m′ +P SPm′+k(t
′)(p)

f l′m′ +P
h̃(t)(n)f l+P m+P

TmbNnTn


= g′

(
a(t)(ν)f l m

) Tmb−1

∑
t′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

δ
(t′)(ν+1)
f l′m′

× J(tt
′)(n)

f SPl′+j(t
′)(p)

f l′m′ +P SPm′+k(t
′)(p)

f l′m′ +P l+P m+P
(5.51)

For backpropagation from conv to conv

66 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

δ
(t)(ν)
f l+Pm+P =

Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

∂a(t
′)(ν+1)

f ′l′m′

∂a(t)(ν)f l m

δ
(t′)(ν+1)
f ′l′+Pm′+P

=
Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

Fν+1−1

∑
f ′′=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f ′

f ′′ j k

×
∂y(t

′)(n)
f ′′ l′+j m′+k

∂h(t)(ν+1)
f l+P m+P

g′
(

a(t)(ν)f l m

)
δ
(t′)(ν+1)
f ′l′+Pm′+P , (5.52)

so

δ
(t)(ν)
f l+Pm+P = γ̃

(n)
f g′

(
a(t)(ν)f l m

) Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f ′

f j k δ
(t′)(ν+1)
f ′l′+Pm′+P

×

δt′
t δ

l′+j
l+Pδm′+k

m+P −
1 + h̃(t

′)(n)
f l′+j m′+kh̃(t)(n)f l+P m+P

TmbNnTn


= g′

(
a(t)(ν)f l m

) Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

RC−1

∑
j=0

RC−1

∑
k=0

δ
(t′)(ν+1)
f ′l′+Pm′+P

×Θ(o) f ′

f j k J(tt
′)(n)

f l′+j m′+k l+P m+P , (5.53)

and for backpropagation from conv to pool (taking the stride equal to 1 to
simplify the derivation)

δ
(t)(ν)
f lm =

Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

∂a(t
′)(ν+1)

f ′l′m′

∂a(t)(ν)f l m

δ
(t′)(ν+1)
f ′l′+Pm′+P

=
Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

Fν+1−1

∑
f ′′=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f ′

f ′′ j k

∂h(t
′)(ν+1)

f ′′ l′+j m′+k

∂h(t)(ν+1)
f l+P m+P

δ
(t′)(ν+1)
f ′l′+Pm′+P

=
Fν+1−1

∑
f ′=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f ′

f j k δ
(t)(ν+1)
f ′l+2P−j m+2P−k . (5.54)

And so on and so forth.

5.C. WEIGHT UPDATE: DETAILS 67

5.C Weight update: details

Fc to Fc

∆Θ(o) f
f ′ =

1
Tmb

Tmb−1

∑
t=0

Fν+1−1

∑
f ′′=0

Fν

∑
f ′′′=0

∂Θ(o) f ′′

f ′′′

∂Θ(o) f
f ′

y(t)(n)f ′′′ δ
(t)(ν)
f ′′ =

Tmb−1

∑
t=0

δ
(t)(ν)
f y(t)(n)f ′ . (5.55)

Fc to pool

∆Θ(o) f
f ′ jk =

1
Tmb

Tmb−1

∑
t=0

Fν+1−1

∑
f ′′=0

Fν

∑
f ′′′=0

Nν+1

∑
j′=0

Tν+1

∑
k′=0

∂Θ(13) f ′′

f ′′′ j′k′

∂Θ(o) f
f ′ jk

h(t)(ν)f ′′′ j′+Pk′+Pδ
(t)(ν)
f ′′

=
Tmb−1

∑
t=0

δ
(t)(ν)
f h(t)(ν)f ′ j+Pk+P . (5.56)

and for conv to conv

∆Θ(o) f
f ′ jk =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′′=0

Tν+1−1

∑
l=0

Nν+1−1

∑
m=0

∂a(t)(ν)f ′′ l m

∂Θ(o) f
f ′ j k

δ
(t)(ν)
f ′′ l+P m+P

=
Tmb−1

∑
t=0

Fν+1−1

∑
f ′′=0

Tν+1−1

∑
l=0

Nν+1−1

∑
m=0

Fν+1−1

∑
f ′′′=0

RC−1

∑
j′=0

RC−1

∑
k′=0

∂Θ(o) f ′′

f ′′′ j′ k′

∂Θ(o) f
f ′ j k

× y(t)(n)f ′′′ SC l+j′ SCm+k′δ
(t)(ν)
f ′′ l+P m+P

=
Tmb−1

∑
t=0

Tν+1−1

∑
l=0

Nν+1−1

∑
m=0

y(t)(n)f ′ SC l+j SCm+kδ
(t)(ν)
f l+P m+P . (5.57)

similarly for conv to pool and conv to input

∆Θ(o) f
f ′ jk =

Tmb−1

∑
t=0

Tν+1−1

∑
l=0

Nν+1−1

∑
m=0

h(t)(ν)f ′ SC l+j SCm+kδ
(t)(ν)
f l+P m+P . (5.58)

68 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

5.D Coefficient update: details

Fc to Fc

∆γ(n)
f =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

∂a(t)(ν+1)
f ′

∂γ
(n)
f

δ
(t)(ν+1)
f ′ =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

Θ(o) f ′

f h̃(t)(n)f δ
(t)(ν+1)
f ′ ,

(5.59)

∆β(n)
f =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

∂a(t)(ν+1)
f ′

∂β
(n)
f

δ
(t)(ν+1)
f ′ =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

Θ(o) f ′

f δ
(t)(ν+1)
f ′ , (5.60)

fc to pool and conv to pool

∆γ(n)
f =

Tmb−1

∑
t=0

Nν+1−1

∑
l=0

Tν+1−1

∑
m=0

h̃(t)(n)
f SPl+j(t)(p)

f lm +P SPm+k(t)(p)
f lm +P

δ
(t)(ν+1)
f lm (5.61)

∆β(n)
f =

Tmb−1

∑
t=0

Nν+1−1

∑
l=0

Tν+1−1

∑
m=0

δ
(t)(ν+1)
f lm , (5.62)

conv to conv

∆γ(n)
f =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l=0

Tν+1−1

∑
m=0

a(t)(ν+1)
f ′lm

∂γ
(n)
f

δ
(t)(ν+1)
f ′lm (5.63)

=
Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l=0

Tν+1−1

∑
m=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f ′

f jk h̃(t)(n)f l+j m+kδ
(t)(ν+1)
f ′lm (5.64)

∆β(n)
f =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l=0

Tν+1−1

∑
m=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f ′

f jk δ
(t)(ν+1)
f ′lm , (5.65)

5.E Practical Simplification

When implementing a CNN, it turns out that some of the error rate com-
putation can be very costly (in term of execution time) if naively encoded. In
this section, we sketch some improvement that can be performed on the pool
to conv, conv to conv error rate implementation, as well as ones on coefficient
updates.

5.E. PRACTICAL SIMPLIFICATION 69

5.E.1 pool to conv Simplification

Let us expand the batch normalization term of the pool to conv error rate
to see how we can simplify it (calling the pooling the p’th one)

δ
(t)(ν)
f lm = γ̃

(n)
f g′

(
a(t)(ν)f l m

) Tmb−1

∑
t′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

δ
(t′)(ν+1)
f l′m′δt′

t δ
SPl′+j(p)

t′ f l′m′
l δ

SPm′+k(p)
t′ f l′m′

m −
1 + h̃(t

′)(n)

f SPl′+j(t
′)(p)

f l′m′ +P SPm′+k(t
′)(p)

f l′m′ +P
h̃(t)(n)f l+P m+P

TmbNnTn

 .

(5.66)

Numerically, this implies that for each t, f , l, m one needs to perform 3 loops
(on t′, l′, m′), hence a 7 loop process. This can be reduced to 4 at most in the
following way. Defining

µ
(1)
f =

Tmb−1

∑
t′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

δ
(t′)(ν+1)
f l′m′ , (5.67)

and

µ
(2)
f =

Tmb−1

∑
t′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

δ
(t′)(ν+1)
f l′m′ h̃(t

′)(n)

f SPl′+j(t
′)(p)

f l′m′ +P SPm′+k(t
′)(p)

f l′m′ +P
, (5.68)

we have introduced two new variables that can be computed in four loops, but
three of them are independent of the ones needed to compute δ

(t)(ν)
f lm . For the

last term, the δ functions "kill" 3 loops and we are left with

δ
(t)(ν)
f lm = γ̃

(n)
f g′

(
a(t)(ν)f l m

){Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

δ
(t′)(ν+1)
f l′m′ δ

SPl′+j(p)
t′ f l′m′

l δ
SPm′+k(p)

t′ f l′m′
m

−
µ
(1)
f + µ

(2)
f h̃(t)(n)f l+P m+P

TmbNnTn

 , (5.69)

which requires only 4 loops to be computed.

70 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

5.E.2 Convolution Simplification
Let us expand the batch normalization term of the conv to conv error rate

to see how we can simplify it

δ
(t)(ν)
f lm = γ̃

(n)
f g′

(
a(t)(iν)f l m

) Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f ′

f j k δ
(t′)(ν+1)
f ′l′m′δt′

t δ
l′+j
l+Pδm′+k

m+P −
1 + h̃(t

′)(n)
f l′+j m′+kh̃(t)(n)f l+P m+P

TmbNnTn

 . (5.70)

If left untouched, one now needs 10 loops (on t, f , l, m and t′, f ′, l′, m′, j, k) to
compute δ

(t)(ν)
f lm ! This can be reduced to 7 loops at most in the following way.

First, we define

λ
(t)(1)
f lm =

Fν+1−1

∑
f ′=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f ′

f j k δ
(t′)(ν+1)
f ′l+P−j m+P−k , (5.71)

which is a convolution operation on a shifted index δ(ν+1). This is second most
expensive operation, but libraries are optimized for this and it implies two of
the smallest loops (those on RC). Then we compute (four loops each)

λ
(2)
f f ′ =

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f ′

f j k , λ
(3)
f ′ =

Tmb−1

∑
t′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

δ
(t′)(ν+1)
f ′l′m′ , (5.72)

and (2 loops)

λ
(4)
f =

Fν+1−1

∑
f ′=0

λ
(2)
f f ′λ

(3)
f ′ . (5.73)

Finally, we compute

λ
(5)
f f ′ jk =

Tmb−1

∑
t′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

δ
(t′)(ν+1)
f ′l′m′ h̃(t

′)(n)
f l′+j m′+k , (5.74)

λ
(6)
f =

Fν+1−1

∑
f ′=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f ′

f j k λ
(5)
f f ′ jk . (5.75)

λ
(6)
f only requires four loops, and λ

(5)
f f ′ jk is the most expensive operation. But it

is also a convolution operation that implies two of the smallest loops (those on

5.F. BATCHPROPAGATION THROUGH A RESNET MODULE 71

RC). With all these newly introduced λ, we obtain

δ
(t)(ν)
f lm = γ̃

(n)
f g′

(
a(t)(ν)f l m

)λ
(t)(1)
f lm −

λ
(4)
f + λ

(6)
f h̃(t)(n)f l+P m+P

TmbNnTn

 , (5.76)

which only requires four loops to be computed.

5.E.3 Coefficient Simplification

To compute

∆γ(n)
f =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l=0

Tν+1−1

∑
m=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f ′

f jk h̃(t)(n)f l+j m+kδ
(t)(ν+1)
f ′lm (5.77)

∆β(n)
f =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l=0

Tν+1−1

∑
m=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ(o) f ′

f jk δ
(t)(ν+1)
f ′lm , (5.78)

we will first define

ν
(1)
f ′ f jk =

Tmb−1

∑
t=0

Nν+1−1

∑
l=0

Tν+1−1

∑
m=0

h̃(t)(n)f l+j m+kδ
(t)(ν+1)
f ′lm , ν

(2)
f ′ =

Tmb−1

∑
t=0

Nν+1−1

∑
l=0

Tν+1−1

∑
m=0

δ
(t)(ν+1)
f ′lm ,

(5.79)

so that

∆γ(n)
f =

Fν+1−1

∑
f ′=0

RC−1

∑
j=0

RC−1

∑
k=0

ν
(1)
f ′ f jkΘ(o) f ′

f jk (5.80)

∆β(n)
f =

Fν+1−1

∑
f ′=0

RC−1

∑
j=0

RC−1

∑
k=0

ν
(2)
f ′ Θ(o) f ′

f jk , (5.81)

5.F Batchpropagation through a ResNet module

For pedagogical reasons, we introduced the ResNet structure without "break-
ing" the conv layers. Nevertheless, a more standard choice is depicted in the
following figure

72 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

Input

Relu 1
BN 1

Conv 1
Relu 2
BN 2

Conv 2
Relu 3
BN 3

Conv 3

Output
+

= Res

Figure 5.31: Batchpropagation through a ResNet module.

Batchpropagation through this ResNet module presents no particular diffi-
culty. Indeed, the update rules imply the usual conv to conv backpropagation
derived in the main part of this note. The only novelty is the error rate update
of the input layer of the ResNet, as it now reads (assuming that the input of
this ResNet module is the output of another one)

δ
(t)(ν)
f l+Pm+P =

Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

∂a(t
′)(ν+1)

f ′l′m′

∂a(t)(ν)f l m

δ
(t′)(ν+1)
f ′l′+Pm′+P

+
Tmb−1

∑
t′=0

Fν+3−1

∑
f ′=0

Nν+3−1

∑
l′=0

Tν+3−1

∑
m′=0

∂a(t
′)(ν+3)

f ′l′m′

∂a(t)(ν)f l m

δ
(t′)(ν+3)
f ′l′+Pm′+P

= g′
(

a(t)(ν)f l m

) Tmb−1

∑
t′=0

Fν+1−1

∑
f ′=0

Nν+1−1

∑
l′=0

Tν+1−1

∑
m′=0

RC−1

∑
j=0

RC−1

∑
k=0

δ
(t′)(ν+1)
f ′l′+Pm′+P

×Θ(o) f ′

f j k J(tt
′)(n)

f l′+j m′+k l+P m+P + δ
(t)(ν+3)
f l+Pm+P . (5.82)

This new term is what allows the error rate to flow smoothly from the output
to the input in the ResNet CNN, as the additional connexion in a ResNet is
like a skip path to the convolution chains. Let us mention in passing that some
architecture connects every hidden layer to each others[19].

5.G Convolution as a matrix multiplication

Thanks to the simplifications introduced in appendix 5.E, we have reduced
all convolution, pooling and tensor multiplication operations to at most 7 loops

5.G. CONVOLUTION AS A MATRIX MULTIPLICATION 73

operations. Nevertheless, in high abstraction programming languages such
as python, it is still way too much to be handled smoothly. But there exists
additional tricks to "reduce" the dimension of the convolution operation, such
as one has only to encode three for loops (2D matrix multiplication) at the end
of the day. Let us begin our presentation of these tricks with a 2D convolution
example

5.G.1 2D Convolution

RC−1∑
j=0

RC−1∑
k=0

Input Convolution Layer
hSC l+j SCm+k

N + 2P

T + 2P

RC

RC

SC

Weight
Θjk×

Output Convolution Layer
alm=

Np

Tp

•••

R2
C

Np

Np

Np × Tp

R2
C

•••

Np

Np

Np × Tp

Figure 5.32: :2D convolution as a 2D matrix multiplication

A 2D convolution operation reads

alm =
RC−1

∑
j=0

RC−1

∑
k=0

ΘjkhSC l+j SCm+k . (5.83)

74 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

and it involves 4 loops. The trick to reduce this operation to a 2D matrix
multiplication is to redefine the h matrix by looking at each h indices are going
to be multiplied by Θ for each value of l and m. Then the associated h values
are stored into a NpTp × R2

C matrix. Flattening out the Θ matrix, we are left
with a matrix multiplication, the flattened Θ matrix being of size R2

C × 1. This
is illustrated on figure 5.32

5.G.2 4D Convolution

Input Convolution Layer

...

N + 2P

T + 2P

Tmb times

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

Output Convolution Layer

...

Np

Tp

Fp

F −1∑
f ′=0

RC−1∑
j=0

RC−1∑
k=0

h
(t)
f ′ SC l+j SCm+k

Tmb times

Θf
f ′jk× a

(t)
flm

=

•••

R2
C F

R2
C

Np × Tp

Np × Tp

Tmb × Np × Tp

Fp

R2
C F

••• Tmb × Np × Tp

Fp

Figure 5.33: 4D convolution as a 2D matrix multiplication

Following the same lines, the adding of the input and output feature maps
as well as the batch size poses no particular conceptual difficulty, as illustrated

5.H. POOLING AS A ROW MATRIX MAXIMUM 75

on figure 5.33, corresponding to the 4D convolution

a(t)f lm =
Fp−1

∑
f ′=0

RC−1

∑
j=0

RC−1

∑
k=0

Θ f
f ′ jkh(t)f ′SC l+j SCm+k . (5.84)

5.H Pooling as a row matrix maximum

Input Convolution Layer

...

N + 2P

T + 2P

Tmb times

F

RP

RP

SP

Output Convolution Layer

...

Np

Tp

F

RP −1max
j=0

RP −1max
k=0 h

(t)
f SP l+j+P SP m+k+P

Tmb times

a
(t)
flm

=

•••

R2
P

F × Np × Tp

Np × Tp

Tmb × F × Np × Tp

F

••• Tmb × F × Np × Tp

Figure 5.34: 4D pooling as a 2D matrix multiplication

The pooling operation can also be simplified, seeing it as the maximum
search on the rows of a flattened 2D matrix. This is illustrated on figure 5.34

a(t)f lm =
RP−1
max
j=0

RP−1
max
k=0

h(t)f SPl+j SPm+k . (5.85)

76 CHAPTER 5. CONVOLUTIONAL NEURAL NETWORKS

Chapter 6

InputConvolutionLayer

...

N+2P

T+2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

OutputConvolutionLayer

...

Np

Tp

Fp Recurrent Neural Networks Input Convolution Layer

...

N + 2P

T + 2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

Output Convolution Layer

...

Np

Tp

Fp

Contents
6.1 Introduction . 73

6.2 RNN-LSTM architecture . 73

6.2.1 Forward pass in a RNN-LSTM 73

6.2.2 Backward pass in a RNN-LSTM 75

6.3 Extreme Layers and loss function 75

6.3.1 Input layer . 76

6.3.2 Output layer . 76

6.3.3 Loss function . 76

6.4 RNN specificities . 76

6.4.1 RNN structure . 76

6.4.2 Forward pass in a RNN 78

6.4.3 Backpropagation in a RNN 78

6.4.4 Weight and coefficient updates in a RNN 79

6.5 LSTM specificities . 80

6.5.1 LSTM structure . 80

6.5.2 Forward pass in LSTM . 81

6.5.3 Batch normalization . 82

6.5.4 Backpropagation in a LSTM 83

6.5.5 Weight and coefficient updates in a LSTM 84

Appendices . 85

77

78 CHAPTER 6. RECURRENT NEURAL NETWORKS

6.A Backpropagation trough Batch Normalization 85

6.B RNN Backpropagation . 86

6.B.1 RNN Error rate updates: details 86

6.B.2 RNN Weight and coefficient updates: details 88

6.C LSTM Backpropagation . 90

6.C.1 LSTM Error rate updates: details 90

6.C.2 LSTM Weight and coefficient updates: details 93

6.D Peephole connexions . 95

6.1 Introduction

I
n this chapter, we review a third kind of Neural Network architecture:
Recurrent Neural Networks[6]. By contrast with the CNN, this kind
of network introduces a real architecture novelty : instead of forward-
ing only in a "spatial" direction, the data are also forwarded in a new

– time dependent – direction. We will present the first Recurrent Neural Net-
work (RNN) architecture, as well as the current most popular one: the Long
Short Term Memory (LSTM) Neural Network.

6.2 RNN-LSTM architecture

6.2.1 Forward pass in a RNN-LSTM

In figure 4.1, we present the RNN architecture in a schematic way

6.2. RNN-LSTM ARCHITECTURE 79

h(00)

h(10)

h(20)

h(30)

h(40)

h(01)

h(11)

h(21)

h(31)

h(41)

h(02)

h(12)

h(22)

h(32)

h(42)

h(03)

h(13)

h(23)

h(33)

h(43)

h(04)

h(14)

h(24)

h(34)

h(44)

h(05)

h(15)

h(25)

h(35)

h(45)

h(06)

h(16)

h(26)

h(36)

h(46)

h(07)

h(17)

h(27)

h(37)

h(47)

Θν(1)

Θν(2)

Θν(3)

Θ

Θτ(1)

Θτ(2)

Θτ(3)

Figure 6.1: RNN architecture, with data propagating both in "space" and in
"time". In our example, the time dimension is of size 8 while the "spatial" one
is of size 4.

The real novelty of this type of neural network is that the fact that we are
trying to predict a time series is encoded in the very architecture of the net-
work. RNN have first been introduced mostly to predict the next words in a
sentence (classification task), hence the notion of ordering in time of the pre-
diction. But this kind of network architecture can also be applied to regression
problems. Among others things one can think of stock prices evolution, or
temperature forecasting. In contrast to the precedent neural networks that we
introduced, where we defined (denoting ν as in previous chapters the layer
index in the spatial direction)

a(t)(ν)f = Weight Averaging
(

h(t)(ν)f

)
,

h(t)(ν+1)
f = Activation function

(
a(t)(ν)f

)
, (6.1)

we now have the hidden layers that are indexed by both a "spatial" and a
"temporal" index (with T being the network dimension in this new direction),

80 CHAPTER 6. RECURRENT NEURAL NETWORKS

and the general philosophy of the RNN is (now the a is usually characterized
by a c for cell state, this denotation, trivial for the basic RNN architecture will
make more sense when we talk about LSTM networks)

c(t)(ντ)
f = Weight Averaging

(
h(t)(ντ−1)

f , h(t)(ν−1τ)
f

)
,

h(t)(ντ)
f = Activation function

(
c(t)(ντ)

f

)
, (6.2)

6.2.2 Backward pass in a RNN-LSTM

The backward pass in a RNN-LSTM has to respect a certain time order, as
illustrated in the following figure.

h(00)

h(10)

h(20)

h(30)

h(40)

h(01)

h(11)

h(21)

h(31)

h(41)

h(02)

h(12)

h(22)

h(32)

h(42)

h(03)

h(13)

h(23)

h(33)

h(43)

h(04)

h(14)

h(24)

h(34)

h(44)

h(05)

h(15)

h(25)

h(35)

h(45)

h(06)

h(16)

h(26)

h(36)

h(46)

h(07)

h(17)

h(27)

h(37)

h(47)

Figure 6.2: Architecture taken, backward pass. Here what cannot compute the
gradient of a layer without having computed the ones that flow into it

With this in mind, let us now see in details the implementation of a RNN
and its advanced cousin, the Long Short Term Memory (LSTM)-RNN.

6.3 Extreme Layers and loss function

These part of the RNN-LSTM networks just experiences trivial modifica-
tions. Let us see them

6.4. RNN SPECIFICITIES 81

6.3.1 Input layer

In a RNN-LSTM, the input layer is recursively defined as

h(t)(0τ+1)
f =

(
h̃(t)(0τ)

f , h(t)(N−1τ)
f

)
. (6.3)

where h̃(t)(0τ)
f is h(t)(0τ)

f with the first time column removed.

6.3.2 Output layer

The output layer of a RNN-LSTM reads

h(t)(Nτ)
f = o

(
FN−1−1

∑
f ′=0

Θ f
f ′h

(t)(N−1τ)
f

)
, (6.4)

where the output function o is as for FNN’s and CNN’s is either the identity
(regression task) or the cross-entropy function (classification task).

6.3.3 Loss function

The loss function for a regression task reads

J(Θ) =
1

2Tmb

Tmb−1

∑
t=0

T−1

∑
τ=0

FN−1

∑
f=0

(
h(t)(Nτ)

f − y(t)(τ)f

)2
. (6.5)

and for a classification task

J(Θ) = − 1
Tmb

Tmb−1

∑
t=0

T−1

∑
τ=0

C−1

∑
c=0

δc
y(t)(τ)c

ln
(

h(t)(Nτ)
f

)
. (6.6)

6.4 RNN specificities

6.4.1 RNN structure

RNN is the most basic architecture that takes – thanks to the way it is built
in – into account the time structure of the data to be predicted. Zooming on
one hidden layer of 6.1, here is what we see for a simple Recurrent Neural
Network.

82 CHAPTER 6. RECURRENT NEURAL NETWORKS

h(ν−1 τ)

h(ν τ−1)

Θ(ν)τ

Θτ(ν)

tanh

h(ν τ)

h(ν τ)

+

Figure 6.3: RNN hidden unit details

And here is how the output of the hidden layer represented in 6.3 enters
into the subsequent hidden units

h(ν−1 τ)

h(ν τ−1)

Θ(ν)τ

Θτ(ν)

tanh

h(ν τ)

h(ν τ)

+

Figure 6.4: How the RNN hidden unit interact with each others

Lest us now mathematically express what is represented in figures 6.3 and
6.4.

6.4. RNN SPECIFICITIES 83

6.4.2 Forward pass in a RNN
In a RNN, the update rules read for the first time slice (spatial layer at the

extreme left of figure 6.1)

h(t)(ντ)
f = tanh

(
Fν−1−1

∑
f ′=0

Θν(ν) f
f ′ h(t)(ν−1τ)

f ′

)
, (6.7)

and for the other ones

h(t)(ντ)
f = tanh

(
Fν−1−1

∑
f ′=0

Θν(ν) f
f ′ h(t)(ν−1τ)

f ′ +
Fν−1

∑
f ′=0

Θτ(ν) f
f ′ h(t)(ντ−1)

f ′

)
. (6.8)

6.4.3 Backpropagation in a RNN

The backpropagation philosophy will remain unchanged : find the error
rate updates, from which one can deduce the weight updates. But as for the
hidden layers, the δ now have both a spatial and a temporal component. We
will thus have to compute

δ
(t)(ντ)
f =

δ

δh(t)(ν+1τ)
f

J(Θ) , (6.9)

to deduce

∆Θindex f
f ′ =

δ

δ∆Θindex f
f ′

J(Θ) , (6.10)

where the index can either be nothing (weights of the output layers), ν(ν)
(weights between two spatially connected layers) or τ(ν) (weights between two
temporally connected layers). First, it is easy to compute (in the same way as
in chapter 1 for FNN) for the MSE loss function

δ
(t)(N−1τ)
f =

1
Tmb

(
h(t)(Nτ)

f − y(t)(τ)f

)
, (6.11)

and for the cross entropy loss function

δ
(t)(N−1)
f =

1
Tmb

(
h(t)(Nτ)

f − δ
f
y(t)(τ)

)
. (6.12)

84 CHAPTER 6. RECURRENT NEURAL NETWORKS

Calling

T (t)(ντ)
f = 1−

(
h(t)(ντ)

f

)2
, (6.13)

and

H(t′)(ντ)a
f f ′ = T (t′)(ν+1τ)

f ′ Θa(ν+1) f ′

f , (6.14)

we show in appendix 6.B.1 that (if τ + 1 exists, otherwise the second term is
absent)

δ
(t)(ν−1τ)
f =

Tmb

∑
t′=0

J(tt
′)(ντ)

f

1

∑
ε=0

Fν+1−ε−1

∑
f ′=0

H(t′)(ν−ετ+ε)bε
f f ′ δ

(t′)(ν−ετ+ε)
f ′ . (6.15)

where b0 = ν and b1 = τ.

6.4.4 Weight and coefficient updates in a RNN

To complete the backpropagation algorithm, we need

∆ν(ν) f
f ′ , ∆τ(ν) f

f ′ , ∆ f
f ′ , ∆β(ντ)

f , ∆γ(ντ)
f . (6.16)

We show in appendix 6.B.2 that

∆ν(ν−) f
f ′ =

T−1

∑
τ=0

Tmb−1

∑
t=0
T (t)(ντ)

f δ
(t)(ν−1τ)
f h(t)(ν−1τ)

f ′ , (6.17)

∆τ(ν) f
f ′ =

T−1

∑
τ=1

Tmb−1

∑
t=0
T (t)(ντ)

f δ
(t)(ν−1τ)
f h(t)(ντ−1)

f ′ , (6.18)

∆ f
f ′ =

T−1

∑
τ=0

Tmb−1

∑
t=0

h(t)(N−1τ)
f ′ δ

(t)(N−1τ)
f , (6.19)

∆β(ντ)
f =

Tmb−1

∑
t=0

1

∑
ε=0

Fν+1−ε−1

∑
f ′=0

H(t′)(ν−ετ+ε)bε
f f ′ δ

(t′)(ν−ετ+ε)
f ′ , (6.20)

∆γ(ντ)
f =

Tmb−1

∑
t=0

h̃(t)(ντ)
f

1

∑
ε=0

Fν+1−ε−1

∑
f ′=0

H(t′)(ν−ετ+ε)bε
f f ′ δ

(t′)(ν−ετ+ε)
f ′ . (6.21)

6.5. LSTM SPECIFICITIES 85

6.5 LSTM specificities

6.5.1 LSTM structure

In a Long Short Term Memory Neural Network[7], the state of a given unit
is not directly determined by its left and bottom neighbours. Instead, a cell
state is updated for each hidden unit, and the output of this unit is a probe of
the cell state. This formulation might seem puzzling at first, but it is philosoph-
ically similar to the ResNet approach that we briefly encounter in the appendix
of chapter 4: instead of trying to fit an input with a complicated function, we
try to fit tiny variation of the input, hence allowing the gradient to flow in a
smoother manner in the network. In the LSTM network, several gates are thus
introduced : the input gate i(t)(ντ)

f determines if we allow new information

g(t)(ντ)
f to enter into the cell state. The output gate o(t)(ντ)

f determines if we
set or not the output hidden value to 0, or really probes the current cell state.
Finally, the forget state f (t)(ντ)

f determines if we forget or not the past cell state.
All theses concepts are illustrated on the figure 6.5, which is the LSTM coun-
terpart of the RNN structure of section 6.4.1. This diagram will be explained
in details in the next section.

c(ν τ−1) c(ν τ)

h(ν−1 τ)

h(ν τ−1)

h(ν−1 τ)

h(ν τ−1)

h(ν−1 τ)

h(ν τ−1)

h(ν−1 τ)

h(ν τ−1)

Θfν (ν) Θiν (ν) Θgν (ν) Θoν (ν)

Θoτ (ν)

Θgτ (ν)

Θiτ (ν)

Θfτ (ν)

f (ν τ)

σ σ

tanh
i(ν τ) g(ν τ)

×
tanh

σ
o(ν τ)

×

h(ν τ)

h(ν τ)

h(ν τ)

h(ν τ)

h(ν τ)h(ν τ)h(ν τ)h(ν τ)

+

+

+

+

× +

Figure 6.5: LSTM hidden unit details

86 CHAPTER 6. RECURRENT NEURAL NETWORKS

In a LSTM, the different hidden units interact in the following way

c(ν τ−1) c(ν τ)

h(ν−1 τ)

h(ν τ−1)

h(ν−1 τ)

h(ν τ−1)

h(ν−1 τ)

h(ν τ−1)

h(ν−1 τ)

h(ν τ−1)

Θfν (ν) Θiν (ν) Θgν (ν) Θoν (ν)

Θoτ (ν)

Θgτ (ν)

Θiτ (ν)

Θgτ (ν)

f (ν τ)

σ σ

tanh
i(ν τ) g(ν τ)

×
tanh

σ
o(ν τ)

×

h(ν τ)

h(ν τ)

h(ν τ)

h(ν τ)

h(ν τ)h(ν τ)h(ν τ)h(ν τ)

+

+

+

+

× +

Figure 6.6: How the LSTM hidden unit interact with each others

6.5.2 Forward pass in LSTM

Considering all the τ − 1 variable values to be 0 when τ = 0, we get the
following formula for the input, forget and output gates

i(t)(ντ)
f = σ

(
Fν−1−1

∑
f ′=0

Θiν (ν) f
f ′ h(t)(ν−1τ)

f ′ +
Fν−1

∑
f ′=0

Θiτ (ν) f
f ′ h(t)(ντ−1)

f ′

)
, (6.22)

f (t)(ντ)
f = σ

(
Fν−1−1

∑
f ′=0

Θ fν (ν) f
f ′ h(t)(ν−1τ)

f ′ +
Fν−1

∑
f ′=0

Θ fτ (ν) f
f ′ h(t)(ντ−1)

f ′

)
, (6.23)

o(t)(ντ)
f = σ

(
Fν−1−1

∑
f ′=0

Θoν (ν) f
f ′ h(t)(ν−1τ)

f ′ +
Fν−1

∑
f ′=0

Θoτ (ν) f
f ′ h(t)(ντ−1)

f ′

)
. (6.24)

The sigmoid function is the reason why the i, f , o functions are called gates:
they take their values between 0 and 1, therefore either allowing or forbid-
ding information to pass through the next step. The cell state update is then

6.5. LSTM SPECIFICITIES 87

performed in the following way

g(t)(ντ)
f = tanh

(
Fν−1−1

∑
f ′=0

Θgν (ν) f
f ′ h(t)(ν−1τ)

f ′ +
Fν−1

∑
f ′=0

Θgτ (ν) f
f ′ h(t)(ντ−1)

f ′

)
, (6.25)

c(t)(ντ)
f = f (t)(ντ)

f c(t)(ντ−1)
f + i(t)(ντ)

f g(t)(ντ)
f , (6.26)

and as announced, hidden state update is just a probe of the current cell state

h(t)(ντ)
f = o(t)(ντ)

f tanh
(

c(t)(ντ)
f

)
. (6.27)

These formula singularly complicates the feed forward and especially the
backpropagation procedure. For completeness, we will us nevertheless care-
fully derive it. Let us mention in passing that recent studies tried to replace the
tanh activation function of the hidden state h(t)(ντ)

f and the cell update g(t)(ντ)
f

by Rectified Linear Units, and seems to report better results with a proper
initialization of all the weight matrices, argued to be diagonal

Θ f
f ′(init) =

1
2

δ
f
f ′

(
+

√
6

Fin + Fout

)
, (6.28)

with the bracket term here to possibly (or not) include some randomness into
the initialization

6.5.3 Batch normalization

In batchnorm The update rules for the gates are modified as expected

i(t)(ντ)
f = σ

(
Fν−1−1

∑
f ′=0

Θiν(ν−) f
f ′ y(t)(ν−1τ)

f ′ +
Fν−1

∑
f ′=0

Θiτ(−ν) f
f ′ y(t)(ντ−1)

f ′

)
, (6.29)

f (t)(ντ)
f = σ

(
Fν−1−1

∑
f ′=0

Θ fν(ν−) f
f ′ y(t)(ν−1τ)

f ′ +
Fν−1

∑
f ′=0

Θ fτ(−ν) f
f ′ y(t)(ντ−1)

f ′

)
, (6.30)

o(t)(ντ)
f = σ

(
Fν−1−1

∑
f ′=0

Θoν(ν−) f
f ′ y(t)(ν−1τ)

f ′ +
Fν−1

∑
f ′=0

Θoτ(−ν) f
f ′ y(t)(ντ−1)

f ′

)
, (6.31)

g(t)(ντ)
f = tanh

(
Fν−1−1

∑
f ′=0

Θgν(ν−) f
f ′ y(t)(ν−1τ)

f ′ +
Fν−1

∑
f ′=0

Θgτ(−ν) f
f ′ y(t)(ντ−1)

f ′

)
, (6.32)

88 CHAPTER 6. RECURRENT NEURAL NETWORKS

where

y(t)(ντ)
f = γ

(ντ)
f h̃(t)(ντ)

f + β
(ντ)
f , (6.33)

as well as

h̃(t)(ντ)
f =

h(t)(ντ)
f − ĥ(ντ)

f√(
σ
(ντ)
f

)2
+ ε

(6.34)

and

ĥ(ντ)
f =

1
Tmb

Tmb−1

∑
t=0

h(t)(ντ)
f ,

(
σ
(ντ)
f

)2
=

1
Tmb

Tmb−1

∑
t=0

(
h(t)(ντ)

f − ĥ(ντ)
f

)2
. (6.35)

It is important to compute a running sum for the mean and the variance, that
will serve for the evaluation of the cross-validation and the test set (calling e
the number of iterations/epochs)

E
[

h(t)(ντ)
f

]
e+1

=
eE
[

h(t)(ντ)
f

]
e
+ ĥ(ντ)

f

e + 1
, (6.36)

Var
[

h(t)(ντ)
f

]
e+1

=
eVar

[
h(t)(ντ)

f

]
e
+
(

σ̂
(ντ)
f

)2

e + 1
(6.37)

and what will be used at the end is E
[

h(t)(ντ)
f

]
and Tmb

Tmb−1Var
[

h(t)(ντ)
f

]
.

6.5.4 Backpropagation in a LSTM

The backpropagation in a LSTM keeps the same structure as in a RNN,
namely

δ
(t)(N−1τ)
f =

1
Tmb

(
h(t)(Nτ)

f − y(t)(τ)f

)
, (6.38)

and (shown in appendix 6.C.1)

δ
(t)(ν−1τ)
f =

Tmb

∑
t′=0

J(tt
′)(ντ)

f

1

∑
ε=0

Fν+1−ε−1

∑
f ′=0

H(t′)(ν−ετ+ε)bε
f f ′ δ

(t′)(ν−ετ+ε)
f ′ . (6.39)

6.5. LSTM SPECIFICITIES 89

What changes is the form of H, now given by

O(t)(ντ)
f = h(t)(ντ)

f

(
1− o(t)(ντ)

f

)
,

I (t)(ντ)
f = o(t)(ντ)

f

(
1− tanh2

(
c(t)(ντ)

f

))
g(t)(ντ)

f i(t)(ντ)
f

(
1− i(t)(ντ)

f

)
,

F (t)(ντ)
f = o(t)(ντ)

f

(
1− tanh2

(
c(t)(ντ)

f

))
c(t)(ντ−1)

f f (t)(ντ)
f

(
1− f (t)(ντ)

f

)
,

G(t)(ντ)
f = o(t)(ντ)

f

(
1− tanh2

(
c(t)(ντ)

f

))
i(t)(ντ)

f

(
1−

(
g(t)(ντ)

f

)2
)

, (6.40)

and

H(t)(ντ)a
f f ′ = Θoa(ν+1) f ′

f O(t)(ν+1τ)
f ′ + Θ fa(ν+1) f ′

f F (t)(ν+1τ)
f ′

+ Θga(ν+1) f ′

f G(t)(ν+1τ)
f ′ + Θia(ν+1) f ′

f I (t)(ν+1τ)
f ′ . (6.41)

6.5.5 Weight and coefficient updates in a LSTM

As for the RNN, (but with the H defined in section 6.5.4), we get for ν = 1

∆ρν(ν) f
f ′ =

T−1

∑
τ=0

Tmb−1

∑
t=0

ρ
(ντ)(t)
f δ

(ντ)(t)
f h(ν−1τ)(t)

f ′ , (6.42)

(6.43)

and otherwise

∆ρν(ν) f
f ′ =

T−1

∑
τ=0

Tmb−1

∑
t=0

ρ
(ντ)(t)
f δ

(ντ)(t)
f y(ν−1τ)(t)

f ′ , (6.44)

ρ
(ντ)(t)
f δ

(ντ)(t)
f y(ν−1τ)(t)

f ′ , (6.45)

∆ρτ(ν) f
f ′ =

T−1

∑
τ=1

Tmb−1

∑
t=0

ρ
(ντ)(t)
f δ

(ντ)(t)
f y(ντ−1)(t)

f ′ , (6.46)

∆β(ντ)
f =

Tmb−1

∑
t=0

1

∑
ε=0

Fν+1−ε−1

∑
f ′=0

H(t)(ν−ετ+ε)bε
f f ′ δ

(t)(ν−ετ+ε)
f ′ , (6.47)

∆γ(ντ)
f =

Tmb−1

∑
t=0

h̃(t)(ντ)
f

1

∑
ε=0

Fν+1−ε−1

∑
f ′=0

H(t)(ν−ετ+ε)bε
f f ′ δ

(t)(ν−ετ+ε)
f ′ .

(6.48)

90 CHAPTER 6. RECURRENT NEURAL NETWORKS

and

∆ f
f ′ =

T−1

∑
τ=0

Tmb−1

∑
t=0

y(t)(N−1τ)
f ′ δ

(t)(N−1τ)
f . (6.49)

Appendix

6.A Backpropagation trough Batch Normalization

For Backpropagation, we will need

∂y(t
′)(ντ)

f ′

∂h(t)(ντ)
f

= γ
(ντ)
f

∂h̃(t)(ντ)
f ′

∂h(t)(ντ)
f

. (6.50)

Since

∂h(t
′)(ντ)

f ′

∂h(t)(ντ)
f

= δt′
t δ

f ′

f ,
∂ĥ(ντ)

f ′

∂h(t)(ντ)
f

=
δ

f ′

f

Tmb
; (6.51)

and

∂
(

σ̂
(ντ)
f ′

)2

∂h(t)(ντ)
f

=
2δ

f ′

f

Tmb

(
h(t)(ντ)

f − ĥ(ντ)
f

)
, (6.52)

we get

∂h̃(t
′)(ντ)

f ′

∂h(t)(ντ)
f

=
δ

f ′

f

Tmb

 Tmbδt′
t − 1((

σ̂
(ντ)
f

)2
+ ε

) 1
2
−

(
h(t
′)(ντ)

f − ĥ(ντ)
f

) (
h(t)(ντ)

f − ĥ(ντ)
f

)
((

σ̂
(ντ)
f

)2
+ ε

) 3
2


=

δ
f ′

f((
σ̂
(ντ)
f

)2
+ ε

) 1
2

δt′
t −

1 + h̃(t
′)(ντ)

f h̃(t)(ντ)
f

Tmb

 . (6.53)

6.B. RNN BACKPROPAGATION 91

To ease the notation we will denote

γ̃
(ντ)
f =

γ
(ντ)
f((

σ̂
(ντ)
f

)2
+ ε

) 1
2

. (6.54)

so that

∂y(t
′)(ντ)

f ′

∂h(t)(ντ)
f

= γ̃
(ντ)
f δ

f ′

f

δt′
t −

1 + h̃(t
′)(ντ)

f h̃(t)(ντ)
f

Tmb

 . (6.55)

This modifies the error rate backpropagation, as well as the formula for the
weight update (y’s instead of h’s). In the following we will use the formula

J(tt
′)(ντ)

f = γ̃
(ντ)
f

δt′
t −

1 + h̃(t
′)(ντ)

f h̃(t)(ντ)
f

Tmb

 . (6.56)

6.B RNN Backpropagation

6.B.1 RNN Error rate updates: details

Recalling the error rate definition

δ
(t)(ντ)
f =

δ

δh(t)(ν+1τ)
f

J(Θ) , (6.57)

we would like to compute it for all existing values of ν and τ. As computed
in chapter 4, one has for the maximum ν value

δ
(t)(N−1τ)
f =

1
Tmb

(
h(t)(Nτ)

f − y(t)(τ)f

)
. (6.58)

Now since (taking Batch Normalization into account)

h(t)(Nτ)
f = o

(
FN−1−1

∑
f ′=0

Θ f
f ′y

(t)(N−1τ)
f

)
, (6.59)

92 CHAPTER 6. RECURRENT NEURAL NETWORKS

and

h(t)(ντ)
f = tanh

(
Fν−1−1

∑
f ′=0

Θν(ν) f
f ′ y(t)(ν−1τ)

f ′ +
Fν−1

∑
f ′=0

Θτ(ν) f
f ′ y(t)(ντ−1)

f ′

)
, (6.60)

we get for

δ
(t)(N−2τ)
f =

Tmb

∑
t′=0

FN−1

∑
f ′=0

δh(t
′)(Nτ)

f ′

δh(t)(N−1τ)
f

δ
(t′)(N−1τ)
f ′

+
FN−1−1

∑
f ′=0

δh(t
′)(N−1τ+1)

f ′

δh(t)(N−1τ)
f

δ
(t′)(N−2τ+1)
f ′

 . (6.61)

Let us work out explicitly once (for a regression cost function and a trivial
identity output function)

δh(t
′)(Nτ)

f ′

δh(t)(N−1τ)
f

=
FN−1−1

∑
f ′′=0

Θ f ′

f ′′
δy(t

′)(N−1τ)
f ′′

δh(t)(N−1τ)
f

= Θ f ′

f J(tt
′)(N−1τ)

f . (6.62)

as well as

δh(t
′)(N−1τ+1)

f ′

δh(t)(N−1τ)
f

=

[
1−

(
h(t
′)(N−1τ+1)

f ′

)2
] FN−1−1

∑
f ′′=0

Θτ(N−1) f ′

f ′′
δy(t

′)(N−1τ)
f ′′

δh(t)(N−1τ)
f

= T (t′)(N−1τ+1)
f ′ Θτ(N−1) f ′

f J(tt
′)(N−1τ)

f . (6.63)

Thus

δ
(t)(N−2τ)
f =

Tmb

∑
t′=0

J(tt
′)(N−1τ)

f

[
FN−1

∑
f ′=0

Θ f ′

f δ
(t′)(N−1τ)
f ′

+
FN−1−1

∑
f ′=0

T (t′)(N−1τ+1)
f ′ Θτ(N−1) f ′

f δ
(t′)(N−2τ+1)
f ′

]
. (6.64)

6.B. RNN BACKPROPAGATION 93

Here we adopted the convention that the δ(t
′)(N−2τ+1)’s are 0 if τ = T. In a

similar way, we derive for ν ≤ N − 1

δ
(t)(ν−1τ)
f =

Tmb

∑
t′=0

J(tt
′)(ντ)

f

[
Fν+1−1

∑
f ′=0

T (t′)(ν+1τ)
f ′ Θν(ν+1) f ′

f δ
(t′)(ντ)
f ′

+
Fν−1

∑
f ′=0
T (t′)(ντ+1)

f ′ Θτ(ν) f ′

f δ
(t′)(ν−1τ+1)
f ′

]
. (6.65)

Defining

T (t′)(Nτ)
f ′ = 1 , Θν(N) f ′

f = Θ f ′

f , (6.66)

the previous δ
(t)(ν−1τ)
f formula extends to the case ν = N − 1. To unite the

RNN and the LSTM formulas, let us finally define (with a either τ or ν

H(t′)(ντ)a
f f ′ = T (t′)(ν+1τ)

f ′ Θa(ν+1) f ′

f , (6.67)

thus (defining b0 = ν and b1 = τ)

δ
(t)(ν−1τ)
f =

Tmb

∑
t′=0

J(tt
′)(ντ)

f

1

∑
ε=0

Fν+1−ε−1

∑
f ′=0

H(t′)(ν−ετ+ε)bε
f f ′ δ

(t′)(ν−ετ+ε)
f ′ . (6.68)

6.B.2 RNN Weight and coefficient updates: details

We want here to derive

∆ν(ν) f
f ′ =

∂

∂Θν(ν) f
f ′

J(Θ) ∆τ(ν) f
f ′ =

∂

∂Θτ(ν) f
f ′

J(Θ) . (6.69)

We first expand

∆ν(ν) f
f ′ =

T−1

∑
τ=0

Fν−1

∑
f ′′=0

Tmb−1

∑
t=0

∂h(t)(ντ)
f ′′

∂Θν(ν) f
f ′

δ
(t)(ν−1τ)
f ′′ ,

∆τ(ν) f
f ′ =

T−1

∑
τ=0

Fν−1

∑
f ′′=0

Tmb−1

∑
t=0

∂h(t)(ντ)
f ′′

∂Θτ(ν) f
f ′

δ
(t)(ν−1τ)
f ′′ , (6.70)

94 CHAPTER 6. RECURRENT NEURAL NETWORKS

so that

∆ν(ν) f
f ′ =

T−1

∑
τ=0

Tmb−1

∑
t=0
T (t)(ντ)

f δ
(t)(ν−1τ)
f h(t)(ν−1τ)

f ′ , (6.71)

∆τ(ν) f
f ′ =

T−1

∑
τ=1

Tmb−1

∑
t=0
T (t)(ντ)

f δ
(t)(ν−1τ)
f h(t)(ντ−1)

f ′ . (6.72)

We also have to compute

∆ f
f ′ =

∂

∂Θ f
f ′

J(Θ) . (6.73)

We first expand

∆ f
f ′ =

T−1

∑
τ=0

FN−1

∑
f ′′=0

Tmb−1

∑
t=0

∂h(t)(Nτ)
f ′′

∂Θ f
f ′

δ
(t)(N−1τ)
f ′′ (6.74)

so that

∆ f
f ′ =

T−1

∑
τ=0

Tmb−1

∑
t=0

h(t)(N−1τ)
f ′ δ

(t)(N−1τ)
f . (6.75)

Finally, we need

∆β(ντ)
f =

∂

∂β
(ντ)
f

J(Θ) ∆γ(ντ)
f =

∂

∂γ
(ντ)
f

J(Θ) . (6.76)

First

∆β(ντ)
f =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

∂h(t)(ν+1τ)
f ′

∂β
(ντ)
f

δ
(t)(ντ)
f ′ +

Fν−1

∑
f ′=0

∂h(t)(ντ+1)
f ′

∂β
(ντ)
f

δ
(t)(ν−1τ+1)
f ′

 ,

∆γ(ντ)
f =

Tmb−1

∑
t=0

Fν+1−1

∑
f ′=0

∂h(t)(ν+1τ)
f ′

∂γ
(ντ)
f

δ
(t)(ντ)
f ′ +

Fν−1

∑
f ′=0

∂h(t)(ντ+1)
f ′

∂γ
(ντ)
f

δ
(t)(ν−1τ+1)
f ′

 .

(6.77)

6.C. LSTM BACKPROPAGATION 95

So that

∆β(ντ)
f =

Tmb−1

∑
t=0

[
Fν+1−1

∑
f ′=0

T (t)(ν+1τ)
f ′ Θν(ν+1) f ′

f δ
(t)(ντ)
f ′

+
Fν−1

∑
f ′=0
T (t)(ντ+1)

f ′ Θτ(ν) f ′

f δ
(t)(ν−1τ+1)
f ′

]
, (6.78)

∆γ(ντ)
f =

Tmb−1

∑
t=0

[
Fν+1−1

∑
f ′=0

T (t)(ν+1τ)
f ′ Θν(ν+1) f ′

f h̃(t)(ντ)
f δ

(t)(ντ)
f ′

+
Fν−1

∑
f ′=0
T (t)(ντ+1)

f ′ Θτ(ν) f ′

f h̃(t)(ντ)
f δ

(t)(ν−1τ+1)
f ′

]
, (6.79)

which we can rewrite as

∆β(ντ)
f =

Tmb−1

∑
t=0

1

∑
ε=0

Fν+1−ε−1

∑
f ′=0

H(t)(ν−ετ+ε)bε
f f ′ δ

(t)(ν−ετ+ε)
f ′ , (6.80)

∆γ(ντ)
f =

Tmb−1

∑
t=0

h̃(t)(ντ)
f

1

∑
ε=0

Fν+1−ε−1

∑
f ′=0

H(t)(ν−ετ+ε)bε
f f ′ δ

(t)(ν−ετ+ε)
f ′ . (6.81)

6.C LSTM Backpropagation

6.C.1 LSTM Error rate updates: details

As for the RNN

δ
(t)(N−1τ)
f =

1
Tmb

(
h(t)(Nτ)

f − y(t)(τ)f

)
. (6.82)

Before going any further, it will be useful to define

O(t)(ντ)
f = h(t)(ντ)

f

(
1− o(t)(ντ)

f

)
,

I (t)(ντ)
f = o(t)(ντ)

f

(
1− tanh2

(
c(t)(ντ)

f

))
g(t)(ντ)

f i(t)(ντ)
f

(
1− i(t)(ντ)

f

)
,

F (t)(ντ)
f = o(t)(ντ)

f

(
1− tanh2

(
c(t)(ντ)

f

))
c(t)(ντ−1)

f f (t)(ντ)
f

(
1− f (t)(ντ)

f

)
,

G(t)(ντ)
f = o(t)(ντ)

f

(
1− tanh2

(
c(t)(ντ)

f

))
i(t)(ντ)

f

(
1−

(
g(t)(ντ)

f

)2
)

, (6.83)

96 CHAPTER 6. RECURRENT NEURAL NETWORKS

and

H(t)(ντ)a
f f ′ = Θoa(ν+1) f ′

f O(t)(ν+1τ)
f ′ + Θ fa(ν+1) f ′

f F (t)(ν+1τ)
f ′

+ Θga(ν+1) f ′

f G(t)(ν+1τ)
f ′ + Θia(ν+1) f ′

f I (t)(ν+1τ)
f ′ . (6.84)

As for RNN, we will start off by looking at

δ
(t)(N−2τ)
f =

Tmb

∑
t′=0

FN−1

∑
f ′=0

δh(t
′)(Nτ)

f ′

δh(t)(N−1τ)
f

δ
(t′)(N−1τ)
f ′

+
FN−1−1

∑
f ′=0

δh(t
′)(N−1τ+1)

f ′

δh(t)(N−1τ)
f

δ
(t′)(N−2τ+1)
f ′

 . (6.85)

We will be able to get our hands on the second term with the general for-
mula, so let us first look at

δh(t
′)(Nτ)

f ′

δh(t)(N−1τ)
f

= Θ f ′

f J(tt
′)(N−1τ)

f , (6.86)

which is is similar to the RNN case. Let us put aside the second term of
δ
(t)(N−2τ)
f , and look at the general case

δ
(t)(ν−1τ)
f =

Tmb

∑
t′=0

Fν+1−1

∑
f ′=0

δh(t
′)(ν+1τ)

f ′

δh(t)(ντ)
f

δ
(t′)(ντ)
f ′ +

Fν−1

∑
f ′=0

δh(t
′)(ντ+1)

f ′

δh(t)(ντ)
f

δ
(t′)(ν−1τ+1)
f ′

 ,

(6.87)

which involves to study in details

δh(t
′)(ν+1τ)

f ′

δh(t)(ντ)
f

=
δo(t

′)(ν+1τ)
f ′

δh(t)(ντ)
f

tanh c(t
′)(ν+1τ)

f ′

+
δc(t

′)(ν+1τ)
f ′

δh(t)(ντ)
f

o(t
′)(ν+1τ)

f ′

[
1− tanh2 c(t

′)(ν+1τ)
f ′

]
. (6.88)

6.C. LSTM BACKPROPAGATION 97

Now

δo(t
′)(ν+1τ)

f ′

δh(t)(ντ)
f

= o(t
′)(ν+1τ)

f ′

[
1− o(t

′)(ν+1τ)
f ′

] Fν−1

∑
f ′′=0

Θoν(ν+1) f ′

f ′′
δy(t

′)(ντ)
f ′

δh(t)(ντ)
f

= o(t
′)(ν+1τ)

f ′

[
1− o(t

′)(ν+1τ)
f ′

]
Θoν(ν+1) f ′

f J(tt
′)(ντ)

f , (6.89)

and

δc(t
′)(ν+1τ)

f ′

δh(t)(ντ)
f

=
δi(t

′)(ν+1τ)
f ′

δh(t)(ντ)
f

g(t
′)(ν+1τ)

f ′ +
δg(t

′)(ν+1τ)
f ′

δh(t)(ντ)
f

i(t
′)(ν+1τ)

f ′

+
δ f (t

′)(ν+1τ)
f ′

δh(t)(ντ)
f

c(t
′)(ντ)

f ′ . (6.90)

We continue our journey

δi(t
′)(ν+1τ)

f ′

δh(t)(ντ)
f

= i(t
′)(ν+1τ)

f ′

[
1− i(t

′)(ν+1τ)
f ′

]
Θiν(ν+1) f ′

f J(tt
′)(ντ)

f ,

δ f (t
′)(ν+1τ)

f ′

δh(t)(ντ)
f

= f (t
′)(ν+1τ)

f ′

[
1− f (t

′)(ν+1τ)
f ′

]
Θ fν(ν+1) f ′

f J(tt
′)(ντ)

f ,

δg(t
′)(ν+1τ)

f ′

δh(t)(ντ)
f

=

[
1−

(
g(t
′)(ν+1τ)

f ′

)2
]

Θgν(ν+1) f ′

f J(tt
′)(ντ)

f , (6.91)

and our notations now come handy

δh(t
′)(ν+1τ)

f ′

δh(t)(ντ)
f

= J(tt
′)(ντ)

f H(t)(ντ)ν

f f ′ . (6.92)

This formula also allows us to compute the second term for δ
(t)(N−2τ)
f . In a

totally similar manner

δh(t
′)(ντ+1)

f ′

δh(t)(ντ)
f

= J(tt
′)(ντ)

f H(t)(ν−1τ+1)τ

f f ′ . (6.93)

98 CHAPTER 6. RECURRENT NEURAL NETWORKS

Going back to our general formula

δ
(t)(ν−1τ)
f =

Tmb

∑
t′=0

J(tt
′)(ντ)

f

[
Fν+1−1

∑
f ′=0

H(t)(ντ)ν

f f ′ δ
(t′)(ντ)
f ′

+
Fν−1

∑
f ′=0

H(t)(ν−1τ+1)τ

f f ′ δ
(t′)(ν−1τ+1)
f ′

]
, (6.94)

and as in the RNN case, we re-express it as (defining b0 = ν and b1 = τ)

δ
(t)(ν−1τ)
f =

Tmb

∑
t′=0

J(tt
′)(ντ)

f

1

∑
ε=0

Fν+1−ε−1

∑
f ′=0

H(t′)(ν−ετ+ε)bε
f f ′ δ

(t′)(ν−ετ+ε)
f ′ . (6.95)

This formula is also valid for ν = N − 1 if we define as for the RNN case

H(t′)(Nτ)
f ′ = 1 , Θν(N) f ′

f = Θ f ′

f , (6.96)

6.C.2 LSTM Weight and coefficient updates: details

We want to compute

∆ρν (ν) f
f ′ =

∂

∂Θρν (ν) f
f ′

J(Θ) ∆ρτ (ν) f
f ′ =

∂

∂Θρτ (ν) f
f ′

J(Θ) , (6.97)

with ρ = (f , i, g, o). First we expand

∆ρν (ν) f
f ′ =

T−1

∑
τ=0

Fν−1

∑
f ′′=0

Tmb−1

∑
t=0

∂h(ντ)(t)
f ′′

∂Θρν (ν) f
f ′

∂

∂h(ντ)(t)
f ′′

J(Θ)

=
T−1

∑
τ=0

Fν−1

∑
f ′′=0

Tmb−1

∑
t=0

∂h(ντ)(t)
f ′′

∂Θρν (ν) f
f ′

δ
(ντ)(t)
f ′′ , (6.98)

so that (with ρ(ντ) = (F , I ,G,O)) if ν = 1

∆ρν(ν−) f
f ′ =

T−1

∑
τ=0

Tmb−1

∑
t=0

ρ
(ντ)(t)
f δ

(ντ)(t)
f h(ν−1τ)(t)

f ′ , (6.99)

6.C. LSTM BACKPROPAGATION 99

and else

∆ρν(ν−) f
f ′ =

T−1

∑
τ=0

Tmb−1

∑
t=0

ρ
(ντ)(t)
f δ

(ντ)(t)
f y(ν−1τ)(t)

f ′ , (6.100)

∆ρτ(ν) f
f ′ =

T−1

∑
τ=1

Tmb−1

∑
t=0

ρ
(ντ)(t)
f δ

(ντ)(t)
f y(ντ−1)(t)

f ′ . (6.101)

We will now need to compute

∆β(ντ)
f =

∂

∂β
(ντ)
f

J(Θ) ∆γ(ντ)
f =

∂

∂γ
(ντ)
f

J(Θ) . (6.102)

For that we need to look at

∆β(ντ)
f =

Fν+1−1

∑
f ′=0

Tmb−1

∑
t′=0

∂h(ν+1τ)(t′)
f ′

∂β
(ντ)
f

δ
(ντ)(t′)
f ′ +

Fν−1

∑
f ′=0

Tmb−1

∑
t′=0

∂h(ντ+1)(t′)
f ′

∂β
(ντ)
f

δ
(ν−1τ+1)(t′)
f ′

=
Tmb−1

∑
t=0

{
Fν+1−1

∑
f ′=0

H(t)(ντ)
f f ′ δ

(t)(ντ)
f ′ +

Fν−1

∑
f ′=0

H(t)(ν−1τ+1)
f f ′ δ

(t)(ντ+1)
f ′

}
. (6.103)

and

∆γ(ντ)
f =

Tmb−1

∑
t=0

h̃(t)(ντ)
f

{
Fν+1−1

∑
f ′=0

H(t)(ντ)
f f ′ δ

(t)(ντ)
f ′ +

Fν−1

∑
f ′=0

H(t)(ν−1τ+1)
f f ′ δ

(t)(ν−1τ+1)
f ′

}
,

(6.104)

which we can rewrite as

∆β(ντ)
f =

Tmb−1

∑
t=0

1

∑
ε=0

Fν+1−ε−1

∑
f ′=0

H(t)(ν−ετ+ε)bε
f f ′ δ

(t)(ν−ετ+ε)
f ′ , (6.105)

∆γ(ντ)
f =

Tmb−1

∑
t=0

h̃(t)(ντ)
f

1

∑
ε=0

Fν+1−ε−1

∑
f ′=0

H(t)(ν−ετ+ε)bε
f f ′ δ

(t)(ν−ετ+ε)
f ′ . (6.106)

Finally, as in the RNN case

100 CHAPTER 6. RECURRENT NEURAL NETWORKS

∆ f
f ′ =

∂

∂Θ f
f ′

J(Θ) . (6.107)

We first expand

∆ f
f ′ =

T−1

∑
τ=0

FN−1

∑
f ′′=0

Tmb−1

∑
t=0

∂h(t)(Nτ)
f ′′

∂Θ f
f ′

δ
(t)(N−1τ)
f ′′ (6.108)

so that

∆ f
f ′ =

T−1

∑
τ=0

Tmb−1

∑
t=0

h(t)(N−1τ)
f ′ δ

(t)(N−1τ)
f . (6.109)

6.D Peephole connexions

Some LSTM variants probe the cell state to update the gate themselves.
This is illustrated in figure 6.7

c(ν τ−1) c(ν τ)

h(ν−1 τ)

h(ν τ−1)

h(ν−1 τ)

h(ν τ−1)

h(ν−1 τ)

h(ν τ−1)

h(ν−1 τ)

h(ν τ−1)

Θfν (ν) Θiν (ν) Θgν (ν) Θoν (ν)

Θoτ (ν)

Θgτ (ν)

Θiτ (ν)

Θfτ (ν)

Θc
f

(ν) Θci (ν) Θco (ν)

f (ν τ)

σ σ

tanh
i(ν τ) g(ν τ)

×
tanh

σ
o(ν τ)

×

h(ν τ)

h(ν τ)

h(ν τ)

h(ν τ)

h(ν τ)h(ν τ)h(ν τ)h(ν τ)

+

+

+

+

× +

Figure 6.7: LSTM hidden unit with peephole

6.D. PEEPHOLE CONNEXIONS 101

Peepholes modify the gate updates in the following way

i(ντ)(t)
f = σ

(
Fν−1−1

∑
f ′=0

Θiν (ν) f
f ′ h(ν−1τ)(t)

f ′ +
Fν−1

∑
f ′=0

[
Θiτ (ν) f

f ′ h(ντ−1)(t)
f ′ + Θ

ci (ν) f
f ′ c(ντ−1)(t)

f ′

])
,

(6.110)

f (ντ)(t)
f = σ

(
Fν−1−1

∑
f ′=0

Θ fν (ν) f
f ′ h(ν−1τ)(t)

f ′ +
Fν−1

∑
f ′=0

[
Θ fτ (ν) f

f ′ h(ντ−1)(t)
f ′ + Θ

c f (ν) f

f ′ c(ντ−1)(t)
f ′

])
,

(6.111)

o(ντ)(t)
f = σ

(
Fν−1−1

∑
f ′=0

Θoν (ν) f
f ′ h(ν−1τ)(t)

f ′ +
Fν−1

∑
f ′=0

[
Θoτ (ν) f

f ′ h(ντ−1)(t)
f ′ + Θco (ν) f

f ′ c(ντ)(t)
f ′

])
,

(6.112)

which also modifies the LSTM backpropagation algorithm in a non-trivial way.
As it as been shown that different LSTM formulations lead to pretty similar
results, we leave to the reader the derivation of the backpropagation update
rules as an exercise.

102 CHAPTER 6. RECURRENT NEURAL NETWORKS

Chapter 7

InputConvolutionLayer

...

N+2P

T+2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

OutputConvolutionLayer

...

Np

Tp

Fp Conclusion Input Convolution Layer

...

N + 2P

T + 2P

F

RC

RC

SC

Weights

..
..
..
.

Fp

..

Output Convolution Layer

...

Np

Tp

Fp

W
e have come to the end of our journey. I hope this note lived up
to its promises, and that the reader now understands better how a
neural network is designed and how it works under the hood. To
wrap it up, we have seen the architecture of the three most common

neural networks, as well as the careful mathematical derivation of their training
formulas.

Deep Learning seems to be a fast evolving field, and this material might be
out of date in a near future, but the index approach adopted will still allow the
reader – as it as helped the writer – to work out for herself what is behind the
next state of the art architectures.

Until then, one should have enough material to encode from scratch its
own FNN, CNN and RNN-LSTM, as the author did as an empirical proof of
his formulas.

103

104 CHAPTER 7. CONCLUSION

Bibliography

[1] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting”. In: J. Mach. Learn. Res. 15.1 (Jan. 2014), pp. 1929–
1958. issn: 1532-4435. url: http://dl.acm.org/citation.cfm?id=
2627435.2670313.

[2] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate Shift”. In:
(Feb. 2015).

[3] Yann Lecun et al. “Gradient-based learning applied to document recog-
nition”. In: Proceedings of the IEEE. 1998, pp. 2278–2324.

[4] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. In: CoRR abs/1409.1556
(2014). url: http://arxiv.org/abs/1409.1556.

[5] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:
7 (Dec. 2015).

[6] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks.
2011.

[7] Felix A. Gers, Jürgen A. Schmidhuber, and Fred A. Cummins. “Learn-
ing to Forget: Continual Prediction with LSTM”. In: Neural Comput. 12.10
(Oct. 2000), pp. 2451–2471. issn: 0899-7667. doi: 10.1162/089976600300015015.
url: http://dx.doi.org/10.1162/089976600300015015.

[8] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information
Storage and Organization in The Brain”. In: Psychological Review (1958),
pp. 65–386.

[9] Yann LeCun et al. “Effiicient BackProp”. In: Neural Networks: Tricks of
the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop. London,
UK, UK: Springer-Verlag, 1998, pp. 9–50. isbn: 3-540-65311-2. url: http:
//dl.acm.org/citation.cfm?id=645754.668382.

[10] Ning Qian. “On the momentum term in gradient descent learning al-
gorithms”. In: Neural Networks 12.1 (1999), pp. 145 –151. issn: 0893-6080.
doi: http://dx.doi.org/10.1016/S0893-6080(98)00116-6. url: http:
//www.sciencedirect.com/science/article/pii/S0893608098001166.

[11] Yurii Nesterov. “A method for unconstrained convex minimization prob-
lem with the rate of convergence O (1/k2)”. In: Doklady an SSSR. Vol. 269.
3. 1983, pp. 543–547.

105

http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://arxiv.org/abs/1409.1556
https://doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1162/089976600300015015
http://dl.acm.org/citation.cfm?id=645754.668382
http://dl.acm.org/citation.cfm?id=645754.668382
https://doi.org/http://dx.doi.org/10.1016/S0893-6080(98)00116-6
http://www.sciencedirect.com/science/article/pii/S0893608098001166
http://www.sciencedirect.com/science/article/pii/S0893608098001166

106 BIBLIOGRAPHY

[12] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization”. In: J. Mach.
Learn. Res. 12 (July 2011), pp. 2121–2159. issn: 1532-4435. url: http://
dl.acm.org/citation.cfm?id=1953048.2021068.

[13] Matthew D. Zeiler. “ADADELTA: An Adaptive Learning Rate Method”.
In: CoRR abs/1212.5701 (2012). url: http://dblp.uni-trier.de/db/
journals/corr/corr1212.html#abs-1212-5701.

[14] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Op-
timization”. In: (Dec. 2014).

[15] Rupesh K. Srivastava, Klaus Greff, and Jurgen Schmidhuber. “High-
way Networks”. In: (). url: http://arxiv.org/pdf/1505.00387v1.pdf.

[16] Jiuxiang Gu et al. “Recent Advances in Convolutional Neural Networks”.
In: CoRR abs/1512.07108 (2015).

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Advances
in Neural Information Processing Systems 25. Ed. by F. Pereira et al. Curran
Associates, Inc., 2012, pp. 1097–1105. url: http://papers.nips.cc/
paper/4824- imagenet- classification- with- deep- convolutional-
neural-networks.pdf.

[18] Christian Szegedy et al. “Going Deeper with Convolutions”. In: Com-
puter Vision and Pattern Recognition (CVPR). 2015. url: http://arxiv.
org/abs/1409.4842.

[19] Gao Huang et al. “Densely Connected Convolutional Networks”. In:
(July 2017).

http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dblp.uni-trier.de/db/journals/corr/corr1212.html#abs-1212-5701
http://dblp.uni-trier.de/db/journals/corr/corr1212.html#abs-1212-5701
http://arxiv.org/pdf/1505.00387v1.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842

	Preface
	Acknowledgements
	Introduction
	Feedforward Neural Networks
	Introduction
	FNN architecture
	Some notations
	Weight averaging
	Activation function
	FNN layers
	Loss function
	Regularization techniques
	Backpropagation
	Which data sample to use for gradient descent?
	Gradient optimization techniques
	Weight initialization
	Appendices
	Backprop through the output layer
	Backprop through hidden layers
	Backprop through BatchNorm
	FNN ResNet (non standard presentation)
	FNN ResNet (more standard presentation)
	Matrix formulation

	Convolutional Neural Networks
	Introduction
	CNN architecture
	CNN specificities
	Modification to Batch Normalization
	Network architectures
	Backpropagation
	Appendices
	Backprop through BatchNorm
	Error rate updates: details
	Weight update: details
	Coefficient update: details
	Practical Simplification
	Batchpropagation through a ResNet module
	Convolution as a matrix multiplication
	Pooling as a row matrix maximum

	Recurrent Neural Networks
	Introduction
	RNN-LSTM architecture
	Extreme Layers and loss function
	RNN specificities
	LSTM specificities
	Appendices
	Backpropagation trough Batch Normalization
	RNN Backpropagation
	LSTM Backpropagation
	Peephole connexions

	Conclusion

