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INTRODUCTION

big program is made up of many small modules. These modules
provide the functions, procedures, and data structures used in
the program. Ideally, most of these modules are ready-made and

come from libraries; only those that are specific to the application at
hand need to be written from scratch. Assuming that library code has
been tested thoroughly, only the application-specific code will contain
bugs, and debugging can be confined to just that code.

Unfortunately, this theoretical ideal rarely occurs in practice. Most
programs are written from scratch, and they use libraries only for the
lowest level facilities, such as I/O and memory management. Program-
mers often write application-specific code for even these kinds of low-
level components; it’s common, for example, to find applications in
which the C library functions malloc and free have been replaced by
custom memory-management functions.

There are undoubtedly many reasons for this situation; one of them is
that widely available libraries of robust, well designed modules are rare.
Some of the libraries that are available are mediocre and lack standards.
The C library has been standardized since 1989, and is only now appear-
ing on most platforms.

Another reason is size: Some libraries are so big that mastering them
is a major undertaking. If this effort even appears to be close to the
effort required to write the application, programmers may simply reim-
plement the parts of the library they need. User-interface libraries, which
have proliferated recently, often exhibit this problem.

Library design and implementation are difficult. Designers must tread
carefully between generality, simplicity, and efficiency. If the routines
and data structures in a library are too general, they may be too hard to
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2 INTRODUCTION
use or inefficient for their intended purposes. If they’re too simple, they
run the risk of not satisfying the demands of applications that might use
them. If they’re too confusing, programmers won’t use them. The C
library itself provides a few examples; its realloc function, for instance,
is a marvel of confusion.

Library implementors face similar hurdles. Even if the design is done
well, a poor implementation will scare off users. If an implementation is
too slow or too big — or just perceived to be so — programmers will
design their own replacements. Worst of all, if an implementation has
bugs, it shatters the ideal outlined above and renders the library useless.

This book describes the design and implementation of a library that is
suitable for a wide range of applications written in the C programming
language. The library exports a set of modules that provide functions
and data structures for “programming-in-the-small.” These modules are
suitable for use as “piece parts” in applications or application compo-
nents that are a few thousand lines long.

Most of the facilities described in the subsequent chapters are those
covered in undergraduate courses on data structures and algorithms. But
here, more attention is paid to how they are packaged and to making
them robust. Each module is presented as an interface and its implemen-
tation. This design methodology, explained in Chapter 2, separates mod-
ule specifications from their implementations, promotes clarity and
precision in those specifications, and helps provide robust imple-
mentations.

1.1 Literate Programs

This book describes modules not by prescription, but by example. Each
chapter describes one or two interfaces and their implementations in
full. These descriptions are presented as literate programs. The code for
an interface and its implementation is intertwined with prose that
explains it. More important, each chapter is the source code for the inter-
faces and implementations it describes. The code is extracted automati-
cally from the source text for this book; what you see is what you get.

A literate program is composed of English prose and labeled chunks of
program code. For example,

〈compute x •  y〉≡
sum = 0;
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for (i = 0; i < n; i++)
sum += x[i]*y[i];

defines a chunk named 〈compute x •  y〉; its code computes the dot prod-
uct of the arrays x and y. This chunk is used by referring to it in another
chunk:

〈function dotproduct〉≡
int dotProduct(int x[], int y[], int n) {

int i, sum;

〈compute x •  y〉
return sum;

}

When the chunk 〈function dotproduct〉 is extracted from the file that
holds this chapter, its code is copied verbatim, uses of chunks are
replaced by their code, and so on. The result of extracting 〈function dot-
product〉 is a file that holds just the code:

int dotProduct(int x[], int y[], int n) {
int i, sum;

sum = 0;
for (i = 0; i < n; i++)

sum += x[i]*y[i];
return sum;

}

A literate program can be presented in small pieces and documented
thoroughly. English prose subsumes traditional program comments, and
isn’t limited by the comment conventions of the programming language.

The chunk facility frees literate programs from the ordering con-
straints imposed by programming languages. The code can be revealed
in whatever order is best for understanding it, not in the order dictated
by rules that insist, for example, that definitions of program entities pre-
cede their uses.

The literate-programming system used in this book has a few more
features that help describe programs piecemeal. To illustrate these fea-
tures and to provide a complete example of a literate C program, the rest
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of this section describes double, a program that detects adjacent identi-
cal words in its input, such as “the the.” For example, the UNIX command

% double intro.txt inter.txt
intro.txt:10: the
inter.txt:110: interface
inter.txt:410: type
inter.txt:611: if

shows that “the” occurs twice in the file intro.txt; the second occur-
rence appears on line 10; and double occurrences of “interface,” “type,”
and “if” appear in inter.txt at the lines shown. If double is invoked
with no arguments, it reads its standard input and omits the file names
from its output. For example:

% cat intro.txt inter.txt | double
10: the
143: interface
343: type
544: if

In these and other displays, commands typed by the user are shown in a
slanted typewriter font, and the output is shown in a regular type-
writer font.

Let’s start double by defining a root chunk that uses other chunks for
each of the program’s components:

〈double.c 4〉≡
〈includes 5〉
〈data 6〉
〈prototypes 6〉
〈functions 5〉

By convention, the root chunk is labeled with the program’s file name;
extracting the chunk 〈double.c 4〉 extracts the program. The other chunks
are labeled with double’s top-level components. These components are
listed in the order dictated by the C programming language, but they can
be presented in any order.

The 4 in 〈double.c 4〉 is the page number on which the definition of the
chunk begins. The numbers in the chunks used in 〈double.c 4〉 are the
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page numbers on which their definitions begin. These page numbers
help readers navigate the code.

The main function handles double’s arguments. It opens each file and
calls doubleword to scan the file:

〈functions 5〉≡
int main(int argc, char *argv[]) {

int i;

for (i = 1; i < argc; i++) {
FILE *fp = fopen(argv[i], "r");
if (fp == NULL) {

fprintf(stderr, "%s: can't open '%s' (%s)\n",
argv[0], argv[i], strerror(errno));

return EXIT_FAILURE;
} else {

doubleword(argv[i], fp);
fclose(fp);

}
}
if (argc == 1) doubleword(NULL, stdin);
return EXIT_SUCCESS;

}

〈includes 5〉≡
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

The function doubleword needs to read words from a file. For the pur-
poses of this program, a word is one or more nonspace characters, and
case doesn’t matter. getword reads the next word from an opened file
into buf[0..size-1] and returns one; it returns zero when it reaches the
end of file.

〈functions 5〉+≡
int getword(FILE *fp, char *buf, int size) {

int c;

c = getc(fp);
〈scan forward to a nonspace character or EOF 6〉
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〈copy the word into buf[0..size-1] 7〉
if (c != EOF)

ungetc(c, fp);
return 〈found a word? 7〉;

}

〈prototypes 6〉≡
int getword(FILE *, char *, int);

This chunk illustrates another literate programming feature: The +≡ that
follows the chunk labeled 〈functions 5〉 indicates that the code for get-
word is appended to the code for the chunk 〈functions 5〉, so that chunk
now holds the code for main and for getcode. This feature permits the
code in a chunk to be doled out a little at a time. The page number in the
label for a continued chunk refers to the first definition for the chunk, so
it’s easy to find the beginning of a chunk’s definition.

Since getword follows main, the call to getword in main needs a pro-
totype, which is the purpose of the 〈prototypes 6〉 chunk. This chunk is
something of a concession to C’s declaration-before-use rule, but if it is
defined consistently and appears before 〈functions 5〉 in the root chunk,
then functions can be presented in any order.

In addition to plucking the next word from the input, getword incre-
ments linenum whenever it runs across a new-line character. double-
word uses linenum when it emits its output.

〈data 6〉≡
int linenum;

〈scan forward to a nonspace character or EOF 6〉≡
for ( ; c != EOF && isspace(c); c = getc(fp))

if (c == '\n')
linenum++;

〈includes 5〉+≡
#include <ctype.h>

The definition of linenum exemplifies chunks that are presented in an
order different from what is required by C. linenum is given here, when
it is first used, instead of at the top of the file or before the definition of
getword, which is where C insists that it be defined.
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The value of size is the limit on the length of words stored by get-
word, which discards the excess characters and folds uppercase letters
to lowercase:

〈copy the word into buf[0..size-1] 7〉≡
{

int i = 0;
for ( ; c != EOF && !isspace(c); c = getc(fp))

if (i < size - 1)
buf[i++] = tolower(c);

if (i < size)
buf[i] = '\0';

}

The index i is compared to size - 1 to guarantee there’s room to store a
null character at the end of the word. The if statement protecting this
assignment handles the case when size is zero. This case won’t occur in
double, but this kind of defensive programming helps catch “can’t hap-
pen” bugs.

All that remains is for getword to return one if buf holds a word, and
zero otherwise:

〈found a word? 7〉≡
buf[0] != '\0'

This definition shows that chunks don’t have to correspond to state-
ments or to any other syntactic unit of C; they’re simply text.

doubleword reads each word, compares it with the previous word,
and complains about duplicates. It looks only at words that begin with
letters:

〈functions 5〉+≡
void doubleword(char *name, FILE *fp) {

char prev[128], word[128];

linenum = 1;
prev[0] = '\0';
while (getword(fp, word, sizeof word)) {

if (isalpha(word[0]) && strcmp(prev, word)==0)
〈word is a duplicate 8〉

strcpy(prev, word);
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}
}

〈prototypes 6〉+≡
void doubleword(char *, FILE *);

〈includes 5〉+≡
#include <string.h>

Emitting the output is easy, but the file name and its trailing colon are
printed only if name isn’t null:

〈word is a duplicate 8〉≡
{

if (name)
printf("%s:", name);

printf("%d: %s\n", linenum, word);
}

This chunk is defined as a compound statement so that it can appear as
the consequent of the if statement in which it is used.

1.2 Programming Style

double illustrates many of the stylistic conventions used for the pro-
grams in this book. It is more important for programs to be read easily
and understood by people than it is for them to be compiled easily by
computers. The compiler doesn’t care about the names chosen for vari-
ables, how the code is laid out, or how the program is divided into mod-
ules. But these kinds of details can have enormous impact on how easily
programmers can read and understand a program.

The code in this book follows established stylistic conventions for C
programs. It uses consistent conventions for naming variables, types,
and routines, and, to the extent permitted by the typographical con-
straints imposed by this book, a consistent indentation style. Stylistic
conventions are not a rigid set of rules that must be followed at all costs;
rather, they express a philosophical approach to programming that
seeks to maximize readability and understanding. Thus, the “rules” are
broken whenever varying the conventions helps to emphasize important
facets of the code or makes complicated code more readable.
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In general, longer, evocative names are used for global variables and
routines, and short names, which may mirror common mathematical
notation, are used for local variables. The loop index i in 〈compute x • y〉
is an example of the latter convention. Using longer names for indices
and variables that are used for similarly traditional purposes usually
makes the code harder to read; for example, in

sum = 0;
for (theindex = 0; theindex < numofElements; theindex++)

sum += x[theindex]*y[theindex];

the variable names obscure what the code does.
Variables are declared near their first use, perhaps in chunks. The dec-

laration of linenum near its first use in getword is an example. Locals
are declared at the beginning of the compound statements in which they
are used, when possible. An example is the declaration of i in 〈copy the
word into buf[0..size-1] 7〉.

In general, the names of procedures and functions are chosen to
reflect what the procedures do and what the functions return. Thus get-
word returns the next word in the input and doubleword finds and
announces words that occur two or more times. Most routines are short,
no more than a page of code; chunks are even shorter, usually less than a
dozen lines.

There are almost no comments in the code because the prose sur-
rounding the chunks that comprise the code take their place. Stylistic
advice on commenting conventions can evoke nearly religious wars
among programmers. This book follows the lead of classics in C pro-
gramming, in which comments are kept to a minimum. Code that is clear
and that uses good naming and indentation conventions usually explains
itself. Comments are called for only to explain, for example, the details
of data structures, special cases in algorithms, and exceptional condi-
tions. Compilers can’t check that comments and code agree; misleading
comments are usually worse than no comments. Finally, some comments
are just clutter; those in which the noise and excess typography drown
out the content do nothing but smother the code.

Literate programming avoids many of the battles that occur in com-
ment wars because it isn’t constrained by the comment mechanisms of
the programming language. Programmers can use whatever typographi-
cal features are best for conveying their intentions, including tables,
equations, pictures, and citations. Literate programming seems to
encourage accuracy, precision, and clarity.
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The code in this book is written in C; it uses most of the idioms com-
monly accepted — and expected — by experienced C programmers.
Some of these idioms can confuse programmers new to C, but they must
master them to become fluent in C. Idioms involving pointers are often
the most confusing because C provides several unique and expressive
operators for manipulating pointers. The library function strcpy, which
copies one string to another and returns the destination string, illus-
trates the differences between “idiomatic C” and code written by new-
comers to C; the latter kind of code often uses arrays:

char *strcpy(char dst[], const char src[]) {
int i;

for (i = 0; src[i] != '\0'; i++)
dst[i] = src[i];

dst[i] = '\0';
return dst;

}

The idiomatic version uses pointers:

char *strcpy(char *dst, const char *src) {
char *s = dst;

while (*dst++ = *src++)
;

return s;
}

Both versions are reasonable implementations of strcpy. The pointer
version uses the common idiom that combines assignment, incrementing
a pointer, and testing the result of the assignment into the single assign-
ment expression. It also modifies its arguments, dst and src, which is
acceptable in C because all arguments are passed by value — arguments
are just initialized locals.

A good case can be made for preferring the array version to the
pointer version. For example, the array version is easier for all program-
mers to understand, regardless of their fluency in C. But the pointer ver-
sion is the one most experienced C programmers would write, and hence
the one programmers are most likely to encounter when reading existing



EFFICIENCY 11
code. This book can help you learn these idioms, understand C’s strong
points, and avoid common pitfalls.

1.3 Efficiency

Programmers seem obsessed with efficiency. They can spend hours
tweaking code to make it run faster. Unfortunately, much of this effort is
wasted. Programmers’ intuitions are notoriously bad at guessing where
programs spend their time.

Tuning a program to make it faster almost always makes it bigger,
more difficult to understand, and more likely to contain errors. There’s
no point in such tuning unless measurements of execution time show
that the program is too slow. A program needs only to be fast enough,
not necessarily as fast as possible.

Tuning is often done in a vacuum. If a program is too slow, the only
way to find its bottlenecks is to measure it. A program’s bottlenecks
rarely occur where you expect them or for the reasons you suspect, and
there’s no point in tuning programs in the wrong places. When you’ve
found the right place, tuning is called for only if the time spent in that
place is a significant amount of the running time. It’s pointless to save
1 percent in a search routine if I/O accounts for 60 percent of the pro-
gram’s running time.

Tuning often introduces errors. The fastest program to a crash isn’t a
winner. Reliability is more important than efficiency; delivering fast soft-
ware that crashes is more expensive in the long run than delivering reli-
able software that’s fast enough.

Tuning is often done at the wrong level. Straightforward implementa-
tions of inherently fast algorithms are better than hand-tuned implemen-
tations of slow algorithms. For example, squeezing instructions out of
the inner loop of a linear search is doomed to be less profitable than
using a binary search in the first place.

Tuning can’t fix a bad design. If the program is slow everywhere, the
inefficiency is probably built into the design. This unfortunate situation
occurs when designs are drawn from poorly written or imprecise prob-
lem specifications, or when there’s no overall design at all.

Most of the code in this book uses efficient algorithms that have good
average-case performance and whose worst-case performance is easy to
characterize. Their execution times on typical inputs will almost always
be fast enough for most applications. Those cases where performance
might pose problems in some applications are clearly identified.
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Some C programmers make heavy use of macros and conditional com-
pilation in their quests for efficiency. This book avoids both whenever
possible. Using macros to avoid function calls is rarely necessary. It pays
only when objective measurements demonstrate that the costs of the
calls in question overwhelm the running times of the rest of the code.
I/O is one of the few places where macros are justified; the standard I/O
functions getc, putc, getchar, and putchar, for example, are often
implemented as macros.

Conditional compilation is often used to configure code for specific
platforms or environments, or to enable or disable debugging code.
These problems are real, but conditional compilation is usually the easy
way out of them and always makes the code harder to read. And it’s
often more useful to rework the code so that platform dependencies are
selected during execution. For example, a single compiler that can select
one of, say, six architectures for which to generate code at execution
time — a cross compiler — is more useful than having to configure and
build six different compilers, and it’s probably easier to maintain.

If an application must be configured at compile time, version-control
tools are better at it than C’s conditional-compilation facilities. The code
isn’t littered with preprocessor directives that make the code hard to
read and obscure what’s being compiled and what isn’t. With version-
control tools, what you see is what is executed. These tools are also ideal
for keeping track of performance improvements.

Further Reading

The ANSI standard (1990) and the technically equivalent ISO standard
(1990) are the definitive references for the standard C library, but
Plauger (1992) gives a more detailed description and a complete imple-
mentation. Similarly, the standards are the last word on C, but Kernighan
and Ritchie (1988) is probably the most widely used reference. The latest
edition of Harbison and Steele (1995) is perhaps the most up-to-date
with respect to the standards, and it also describes how to write “clean
C” — C code that can be compiled with C++ compilers. Jaeschke (1991)
condenses the essence of Standard C into a compact dictionary format,
which is a useful reference for C programmers.

 Software Tools by Kernighan and Plauger (1976) gives early examples
of literate programs, although the authors used ad hoc tools to include
code in the book. WEB is the one of the first tools designed explicitly for
literate programming. Knuth (1992) describes WEB and some of its vari-
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ants and uses; Sewell (1989) is a tutorial introduction to WEB. Simpler
tools (Hanson 1987; Ramsey 1994) can go a long way to providing much
of WEB’s essential functionality. This book uses notangle, one of the
programs in Ramsey’s noweb system, to extract the chunks. noweb is also
used by Fraser and Hanson (1995) to present an entire C compiler as a
literate program. This compiler is also a cross compiler.

double is taken from Kernighan and Pike (1984) where it’s imple-
mented in the AWK programming language (Aho, Kernighan, and Wein-
berger 1988). Despite its age, Kernighan and Pike remains one of the best
books on the UNIX programming philosophy.

The best way to learn good programming style is to read programs
that use good style. This book follows the enduring style used in Ker-
nighan and Pike (1984) and Kernighan and Ritchie (1988). Kernighan and
Plauger (1978) is the classic book on programming style, but it doesn’t
include any examples in C. Ledgard’s brief book (1987) offers similar
advice, and Maguire (1993) provides a perspective from the world of PC
programming. Koenig (1989) exposes C’s dark corners and highlights the
ones that should be avoided. McConnell (1993) offers sound advice on
many aspects of program construction, and gives a balanced discussion
of the pros and cons of using goto statements.

The best way to learn to write efficient code is to have a thorough
grounding in algorithms and to read other code that is efficient.
Sedgewick (1990) surveys all of the important algorithms most program-
mers need to know, and Knuth (1973a) gives the gory details on the fun-
damental ones. Bentley (1982) is 170 pages of good advice and common
sense on how to write efficient code.

Exercises

1.1 getword increments linenum in 〈scan forward to a nonspace or
EOF 6〉 but not after 〈copy the word into buf[0..size-1] 7〉 when a
word ends at a new-line character. Explain why. What would hap-
pen if linenum were incremented in this case?

1.2 What does double print when it sees three or more identical
words in its input? Change double to fix this “feature.”

1.3 Many experienced C programmers would include an explicit com-
parison in strcpy’s loop:
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char *strcpy(char *dst, const char *src) {
char *s = dst;

while ((*dst++ = *src++) != '\0')
;

return s;
}

The explicit comparison makes it clear that the assignment isn’t a
typographical error. Some C compilers and related tools, like
Gimpel Software’s PC-Lint and LCLint (Evans 1996), issue a warn-
ing when the result of an assignment is used as a conditional,
because such usage is a common source of errors. If you have PC-
Lint or LCLint, experiment with it on some “tested” programs.
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INTERFACES AND 

IMPLEMENTATIONS

module comes in two parts, its interface and its implementation.
The interface specifies what a module does. It declares the iden-
tifiers, types, and routines that are available to code that uses the

module. An implementation specifies how a module accomplishes the
purpose advertised by its interface. For a given module, there is usually
one interface, but there might be many implementations that provide the
facilities specified by the interface. Each implementation might use dif-
ferent algorithms and data structures, but they all must meet the specifi-
cation given by the interface.

A client is a piece of code that uses a module. Clients import inter-
faces; implementations export them. Clients need to see only the inter-
face. Indeed, they may have only the object code for an implementation.
Clients share interfaces and implementations, thus avoiding unnecessary
code duplication. This methodology also helps avoid bugs — interfaces
and implementations are written and debugged once, but used often.

2.1 Interfaces

An interface specifies only those identifiers that clients may use, hiding
irrelevant representation details and algorithms as much as possible.
This helps clients avoid dependencies on the specifics of particular
implementations. This kind of dependency between a client and an
implementation — coupling — causes bugs when an implementation
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changes; these bugs can be particularly hard to fix when the dependen-
cies are buried in hidden or implicit assumptions about an implementa-
tion. A well-designed and precisely specified interface reduces coupling.

C has only minimal support for separating interfaces from implemen-
tations, but simple conventions can yield most of the benefits of the
interface/implementation methodology. In C, an interface is specified by
a header file, which usually has a .h file extension. This header file
declares the macros, types, data structures, variables, and routines that
clients may use. A client imports an interface with the C preprocessor
#include directive.

The following example illustrates the conventions used in this book’s
interfaces. The interface

〈arith.h〉≡
extern int Arith_max(int x, int y);
extern int Arith_min(int x, int y);
extern int Arith_div(int x, int y);
extern int Arith_mod(int x, int y);
extern int Arith_ceiling(int x, int y);
extern int Arith_floor  (int x, int y);

declares six integer arithmetic functions. An implementation provides
definitions for each of these functions.

The interface is named Arith and the interface header file is named
arith.h. The interface name appears as a prefix for each of the identifi-
ers in the interface. This convention isn’t pretty, but C offers few alterna-
tives. All file-scope identifiers — variables, functions, type definitions,
and enumeration constants — share a single name space. All global
structure, union, and enumeration tags share another single name space.
In a large program, it’s easy to use the same name for different purposes
in otherwise unrelated modules. One way to avoid these name collisions
is use a prefix, such as the module name. A large program can easily
have thousands of global identifiers, but usually has only hundreds of
modules. Module names not only provide suitable prefixes, but help doc-
ument client code.

The functions in the Arith interface provide some useful pieces miss-
ing from the standard C library and provide well-defined results for divi-
sion and modulus where the standard leaves the behavior of these
operations undefined or implementation-defined.

Arith_min and Arith_max return the minimum and maximum of
their integer arguments.
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Arith_div returns the quotient obtained by dividing x by y, and
Arith_mod returns the corresponding remainder. When x and y are both
positive or both negative, Arith_div(x, y) is equal to x/y and
Arith_mod(x, y) is equal to x%y. When the operands have different
signs, however, the values returned by C’s built-in operators depend on
the implementation. When y is zero, Arith_div and Arith_mod behave
the same as x/y and x%y.

The C standard insists only that if x/y is representable, then (x/y)•y +
x%y must be equal to x. These semantics permit integer division to trun-
cate toward zero or toward minus infinity when one of the operands is
negative. For example, if −13/5 is −2, then the standard says that −13%5
must be equal to −13 − (−13/5)•5 = −13 − (−2)•5 = −3. But if −13/5 is −3,
then the value of −13%5 must be −13 − (−3)•5 = 2.

The built-in operators are thus useful only for positive operands. The
standard library functions div and ldiv take two integers or long inte-
gers and return the quotient and remainder in the quot and rem fields of
a structure. Their semantics are well defined: they always truncate
toward zero, so div(-13, 5).quot is always equal to −2. Arith_div and
Arith_mod are similarly well defined. They always truncate toward the
left on the number line; toward zero when their operands have the same
sign, and toward minus infinity when their signs are different, so
Arith_div(-13, 5) returns −3.

The definitions for Arith_div and Arith_mod are couched in more
precise mathematical terms. Arith_div(x, y) is the maximum integer
that does not exceed the real number z such that z•y = x. Thus, for

 and y = 5 (or x = 13 and y = −5), z is −2.6, so Arith_div(-13, 5)
is −3. Arith_mod(x, y) is defined to be equal to x − y•Arith_div(x, y),
so Arith_mod(-13, 5) is −13 − 5•(−3) = 2.

The functions Arith_ceiling and Arith_floor follow similar con-
ventions. Arith_ceiling(x, y) returns the least integer not less than
the real quotient of x/y, and Arith_floor(x, y) returns the greatest
integer not exceeding the real quotient of x/y. Arith_ceiling returns
the integer to the right of x/y on the number line, and Arith_floor
returns the integer to the left of x/y for all operands. For example:

Arith_ceiling( 13,5) = 13/5 = 2.6 = 3
Arith_ceiling(-13,5) = −13/5 = −2.6 = −2
Arith_floor  ( 13,5) = 13/5 = 2.6 = 2
Arith_floor  (-13,5) = −13/5 = −2.6 = −3

x 13–=
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This laborious specification for an interface as simple as Arith is
unfortunately both typical and necessary for most interfaces. Most pro-
gramming languages include holes in their semantics where the precise
meanings of some operations are ill-defined or simply undefined. C’s
semantics are riddled with such holes. Well-designed interfaces plug
these holes, define what is undefined, and make explicit decisions about
behaviors that the language specifies as undefined or implementation-
defined.

Arith is not just an artificial example designed to show C’s pitfalls. It
is useful, for example, for algorithms that involve modular arithmetic,
like those used in hash tables. Suppose i is to range from zero to N-1
where N exceeds 1 and incrementing and decrementing i is to be done
modulo N. That is, if i is N-1, i+1 is 0, and if i is 0, i-1 is N-1. The
expressions

i = Arith_mod(i + 1, N);
i = Arith_mod(i - 1, N);

increment and decrement i correctly. The expression i = (i+1)%N
works, too, but i = (i-1)%N doesn’t work because when i is 0, (i-1)%N
can be -1 or N-1. The programmer who uses (i-1)%N on a machine
where (-1)%N returns N-1 and counts on that behavior is in for a rude
surprise when the code is ported to a machine where (-1)%N returns -1.
The library function div(x, y) doesn’t help either. It returns a structure
whose quot and rem fields hold the quotient and remainder of x/y.
When i is zero, div(i-1, N).rem is always −1. It is possible to use
i = (i-1+N)%N, but only when i-1+N can’t overflow.

2.2 Implementations

An implementation exports an interface. It defines the variables and
functions necessary to provide the facilities specified by the interface.
An implementation reveals the representation details and algorithms of
its particular rendition of the interface, but, ideally, clients never need to
see these details. Clients share object code for implementations, usually
by loading them from libraries.

An interface can have more than one implementation. As long as the
implementation adheres to the interface, it can be changed without
affecting clients. A different implementation might provide better per-
formance, for example. Well-designed interfaces avoid machine depen-
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dencies, but may force implementations to be machine-dependent, so
different implementations or parts of implementations might be needed
for each machine on which the interface is used.

In C, an implementation is provided by one or more .c files. An imple-
mentation must provide the facilities specified by the interface it
exports. Implementations include the interface’s .h file to ensure that its
definitions are consistent with the interface’s declarations. Beyond this,
however, there are no linguistic mechanisms in C to check an implemen-
tation’s compliance.

Like the interfaces, the implementations described in this book have a
stylized format illustrated by arith.c:

〈arith.c〉≡
#include "arith.h"
〈arith.c functions 19〉

〈arith.c functions 19〉≡
int Arith_max(int x, int y) {

return x > y ? x : y;
}

int Arith_min(int x, int y) {
return x > y ? y : x;

}

In addition to 〈arith.c functions 19〉, more involved implementations may
have chunks named 〈data〉, 〈types〉, 〈macros〉, 〈prototypes〉, etc. File names
in chunks, such as arith.c, are omitted when no confusion results.

Arith_div must cope with the two possible behaviors for division
when its arguments have different signs. If division truncates toward
zero and y doesn’t divide x evenly, then Arith_div(x,y) is x/y - 1; oth-
erwise, x/y will do:

〈arith.c functions 19〉+≡
int Arith_div(int x, int y) {

if (〈division truncates toward 0 20〉
&& 〈x and y have different signs 20〉 && x%y != 0)

return x/y - 1;
else

return x/y;
}
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The example from the previous section, dividing −13 by 5, tests which
way division truncates. Capturing the outcomes of testing whether x and
y are less than zero and comparing these outcomes checks the signs:

〈division truncates toward 0 20〉≡
-13/5 == -2

〈x and y have different signs 20〉≡
(x < 0) != (y < 0)

Arith_mod could be implemented as it’s defined:

int Arith_mod(int x, int y) {
return x - y*Arith_div(x, y);

}

Arith_mod can also use the % operator if it tests for the same condi-
tions as Arith_div. When those conditions are true,

Arith_mod(x,y) = x - y*Arith_div(x, y)
= x - y*(x/y - 1)
= x - y*(x/y) + y

The underlined subexpression is the Standard C definition of x%y, so
Arith_mod is

〈arith.c functions 19〉+≡
int Arith_mod(int x, int y) {

if (〈division truncates toward 0 20〉
&& 〈x and y have different signs 20〉 && x%y != 0)

return x%y + y;
else

return x%y;
}

Arith_floor is just Arith_div, and Arith_ceiling is Arith_div
plus one, unless y divides x evenly:

〈arith.c functions 19〉+≡
int Arith_floor(int x, int y) {
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return Arith_div(x, y);
}

int Arith_ceiling(int x, int y) {
return Arith_div(x, y) + (x%y != 0);

}

2.3 Abstract Data Types

An abstract data type is an interface that defines a data type and opera-
tions on values of that type. A data type is a set of values. In C, built-in
data types include characters, integers, floating-point numbers, and so
forth. Structures themselves define new types and can be used to form
higher-level types, such as lists, trees, lookup tables, and more.

A high-level type is abstract because the interface hides the details of
its representation and specifies the only legal operations on values of the
type. Ideally, these operations don’t reveal representation details on
which clients might implicitly depend. The canonical example of an
abstract data type, or ADT, is the stack. Its interface defines the type and
its five operations:

〈initial version of stack.h〉≡
#ifndef STACK_INCLUDED
#define STACK_INCLUDED

typedef struct Stack_T *Stack_T;

extern Stack_T Stack_new  (void);
extern int     Stack_empty(Stack_T stk);
extern void    Stack_push (Stack_T stk, void *x);
extern void   *Stack_pop  (Stack_T stk);
extern void    Stack_free (Stack_T *stk);

#endif

The typedef defines the type Stack_T, which is a pointer to a structure
with a tag of the same name. This definition is legal because structure,
union, and enumeration tags occupy a name space that is separate from
the space for variables, functions, and type names. This idiom is used
throughout this book. The typename — Stack_T — is the name of inter-
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est in this interface; the tag name may be important only to the imple-
mentation. Using the same name avoids polluting the code with excess
names that are rarely used.

The macro STACK_INCLUDED pollutes the name space, too, but the
_INCLUDED suffix helps avoid collisions. Another common convention is
to prefix an underscore to these kinds of names, such as _STACK or
_STACK_INCLUDED. However, Standard C reserves leading underscores
for implementors and for future extensions, so it seems prudent to avoid
leading underscores.

This interface reveals that stacks are represented by pointers to struc-
tures, but it says nothing about what those structures look like. Stack_T
is an opaque pointer type; clients can manipulate such pointers freely,
but they can’t dereference them; that is, they can’t look at the innards of
the structure pointed to by them. Only the implementation has that
privilege.

Opaque pointers hide representation details and help catch errors.
Only Stack_Ts can be passed to the functions above; attempts to pass
other kinds of pointers, such as pointers to other structures, yield com-
pilation errors. The lone exception is a void pointer, which can be passed
to any kind of pointer.

The conditional compilation directives #ifdef and #endif, and the
#define for STACK_INCLUDED, permit stack.h to be included more than
once, which occurs when interfaces import other interfaces. Without this
protection, second and subsequent inclusions would cause compilation
errors about the redefinition of Stack_T in the typedef.

This convention seems the least offensive of the few available alterna-
tives. Forbidding interfaces to include other interfaces avoids the need
for repeated inclusion altogether, but forces interfaces to specify the
other interfaces that must be imported some other way, such as in com-
ments, and forces programmers to provide the includes. Putting the con-
ditional compilation directives in a client instead of the interface avoids
reading the interface unnecessarily, but litters the directives in many
places instead of only in the interface. The convention illustrated above
makes the compiler do the dirty work.

By convention, an interface X that specifies an ADT defines it as a type
named X_T. The interfaces in this book carry this convention one step
further by using a macro to abbreviate X_T to just T within the interface.
With this convention, stack.h is
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〈stack.h〉≡
#ifndef STACK_INCLUDED
#define STACK_INCLUDED

#define T Stack_T
typedef struct T *T;

extern T     Stack_new  (void);
extern int   Stack_empty(T stk);
extern void  Stack_push (T stk, void *x);
extern void *Stack_pop  (T stk);
extern void  Stack_free (T *stk);

#undef T
#endif

This interface is semantically equivalent to the previous one. The abbre-
viation is just syntactic sugar that makes interfaces a bit easier to read; T
always refers to the primary type in the interface. Clients, however, must
use Stack_T because the #undef directive at the end of stack.h
removes the abbreviation.

This interface provides unbounded stacks of arbitrary pointers.
Stack_new manufactures new stacks; it returns a value of type T that
can be passed to the other four functions. Stack_push pushes a pointer
onto a stack, Stack_pop removes and returns the pointer on the top of a
stack, and Stack_empty returns one if the stack is empty and zero oth-
erwise. Stack_free takes a pointer to a T, deallocates the stack pointed
to by that pointer, and sets the variable of type T to the null pointer. This
design helps avoid dangling pointers — pointers that point to deallo-
cated memory. For example, if names is defined and initialized by

#include "stack.h"
Stack_T names = Stack_new();

the statement

Stack_free(&names);

deallocates the stack assigned to names and sets names to the null
pointer.



24 INTERFACES AND IMPLEMENTATIONS
When an ADT is represented by a opaque pointer, the exported type is
a pointer type, which is why Stack_T is a typedef for a pointer to a
struct Stack_T. Similar typedefs are used for most of the ADTs in this
book. When an ADT reveals its representation and exports functions that
accept and return structures by value, it defines the structure type as the
exported type. This convention is illustrated by the Text interface in
Chapter 16, which declares Text_T to be a typedef for struct Text_T. In
any case, T always abbreviates the primary type in the interface.

2.4 Client Responsibilities

An interface is a contract between its implementations and its clients. An
implementation must provide the facilities specified in the interface, and
clients must use these facilities in accordance with the implicit and
explicit rules described in the interface. The programming language pro-
vides some implicit rules governing the use of types, functions, and vari-
ables declared in the interface. For example, C’s type-checking rules
catch errors in the types and in the numbers of arguments to interface
functions.

Those rules that are not specified by C usage or checked by the C com-
piler must be spelled out in the interface. Clients must adhere to them,
and implementations must enforce them. Interfaces often specify un-
checked runtime errors, checked runtime errors, and exceptions. Un-
checked and checked runtime errors are not expected user errors, such
as failing to open a file. Runtime errors are breaches of the contract be-
tween clients and implementations, and are program bugs from which
there is no recovery. Exceptions are conditions that, while possible,
rarely occur. Programs may be able to recover from exceptions. Running
out of memory is an example. Exceptions are described in detail in
Chapter 4.

An unchecked runtime error is a breach of contract that implementa-
tions do not guarantee to detect. If an unchecked runtime error occurs,
execution might continue, but with unpredictable and perhaps unrepeat-
able results. Good interfaces avoid unchecked runtime errors when pos-
sible, but must specify those that can occur. Arith, for example, must
specify that division by zero is an unchecked runtime error. Arith could
check for division by zero, but leaves it as an unchecked runtime error so
that its functions mimic the behavior of C’s built-in division operators,
whose behavior is undefined. Making division by zero a checked runtime
error is a reasonable alternative.
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A checked runtime error is a breach of contract that implementations
guarantee to detect. These errors announce a client’s failure to adhere to
its part of the contract; it’s the client’s responsibility to avoid them. The
Stack interface specifies three checked runtime errors:

1. passing a null Stack_T to any routine in this interface;

2. passing a null pointer to a Stack_T to Stack_free; or

3. passing an empty stack to Stack_pop.

Interfaces may specify exceptions and the conditions under which
they are raised. As explained in Chapter 4, clients can handle exceptions
and take corrective action. An unhandled exception is treated as a
checked runtime error. Interfaces usually list the exceptions they raise
and those raised by any interface they import. For example, the Stack
interface imports the Mem interface, which it uses to allocate space, so it
specifies that Stack_new and Stack_push can raise Mem_Failed. Most
of the interfaces in this book specify similar checked runtime errors and
exceptions.

With these additions to the Stack interface, we can proceed to its
implementation:

〈stack.c〉≡
#include <stddef.h>
#include "assert.h"
#include "mem.h"
#include "stack.h"

#define T Stack_T
〈types 25〉
〈functions 26〉

The #define directive reinstantiates T as an abbreviation for Stack_T.
The implementation reveals the innards of a Stack_T, which is a struc-
ture with a field that points to a linked list of the pointers on the stack
and a count of the number of these pointers.

〈types 25〉≡
struct T {

int count;
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struct elem {
void *x;
struct elem *link;

} *head;
};

Stack_new allocates and initializes a new T:

〈functions 26〉≡
T Stack_new(void) {

T stk;

NEW(stk);
stk->count = 0;
stk->head = NULL;
return stk;

}

NEW is an allocation macro from the Mem interface. NEW(p) allocates an
instance of the structure pointed to by p, so its use in Stack_new allo-
cates a new Stack_T structure.

Stack_empty returns one if the count field is 0 and zero otherwise:

〈functions 26〉+≡
int Stack_empty(T stk) {

assert(stk);
return stk->count == 0;

}

assert(stk) implements the checked runtime error that forbids a null
T to be passed to any function in Stack. assert(e) is an assertion that e
is nonzero for any expression e. It does nothing if e is nonzero, and halts
program execution otherwise. assert is part of the standard library, but
Chapter 4’s Assert interface defines its own assert with similar seman-
tics, and provides for graceful program termination. assert is used for
all checked runtime errors.

Stack_push and Stack_pop add and remove elements from the head
of the linked list emanating from stk->head: 
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〈functions 26〉+≡
void Stack_push(T stk, void *x) {

struct elem *t;

assert(stk);
NEW(t);
t->x = x;
t->link = stk->head;
stk->head = t;
stk->count++;

}

void *Stack_pop(T stk) {
void *x;
struct elem *t;

assert(stk);
assert(stk->count > 0);
t = stk->head;
stk->head = t->link;
stk->count--;
x = t->x;
FREE(t);
return x;

}

FREE is Mem’s deallocation macro; it deallocates the space pointed to by
its pointer argument, then sets the argument to the null pointer for the
same reasons that Stack_free does — to help avoid dangling pointers.
Stack_free also calls FREE:

〈functions 26〉+≡
void Stack_free(T *stk) {

struct elem *t, *u;

assert(stk && *stk);
for (t = (*stk)->head; t; t = u) {

u = t->link;
FREE(t);

}
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FREE(*stk);
}

This implementation reveals one unchecked runtime error that all
ADT interfaces in this book suffer and that thus goes unspecified.
There’s no way to guarantee that the Stack_Ts passed to Stack_push,
Stack_pop, Stack_empty, and the Stack_T* passed to Stack_free are
valid Stack_Ts returned by Stack_new. Exercise 2.3 explores partial
solutions to this problem.

There are two more unchecked runtime errors whose effects can be
more subtle. Many of the ADTs in this book traffic in void pointers; that
is, they store and return void pointers. It is an unchecked runtime error
to store a function pointer—a pointer to a function—in any such ADT. A
void pointer is a generic pointer; a variable of type void * can hold any
pointer to an object, which includes the predefined types, structures, and
pointers. Function pointers are different, however. While many C compil-
ers permit assignments of function pointers to void pointers, there’s no
guarantee that a void pointer can hold a function pointer.

Any object pointer can travel through a void pointer without loss of
information. For example, after executing

S *p, *q;
void *t;
…
t = p;
q = t;

p and q will be equal, for any nonfunction type S. Void pointers must not,
however, be used to subvert the type system. For example, after
executing

S *p;
D *q;
void *t;
…
t = p;
q = t;

there’s no guarantee that q will be equal to p, or, depending on the align-
ment constraints for the types S and D, that q will be a valid pointer to
an object of type D. In Standard C, void pointers and char pointers have
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the same size and representation. But other pointers might be smaller or
have different representations. Thus, it is an unchecked runtime error to
store a pointer to S in an ADT but retrieve it into a variable of type D,
where S and D are different object types.

It is tempting to declare an opaque pointer argument const when an
ADT function doesn’t modify the referent. For example, Stack_empty
might be written as follows.

int Stack_empty(const T stk) {
assert(stk);
return stk->count == 0;

}

This use of const is incorrect. The intent here is to declare stk to be a
“pointer to a constant struct T,” because Stack_empty doesn’t modify
*stk. But the declaration const T stk declares stk to be a “constant
pointer to a struct T” — the typedef for T wraps the struct T * in a sin-
gle type, and this entire type is the operand of const. const T stk is use-
less to both Stack_empty and its callers, because all scalars, including
pointers, are passed by value in C. Stack_empty can’t change the value
of a caller’s actual argument, with or without the const qualifier.

This problem could be avoided by using struct T * in place of T:

int Stack_empty(const struct T *stk) {
assert(stk);
return stk->count == 0;

}

This usage illustrates why const should not be used for pointers to
ADTs: const reveals something about the implementation and thus con-
strains the possibilities. Using const isn’t a problem for this implementa-
tion of Stack, but it precludes other, equally viable, alternatives.
Suppose an implementation delayed deallocating the stack elements in
hope of reusing them, but deallocated them when Stack_empty was
called. That implementation of Stack_empty needs to modify *stk, but
it can’t because stk is declared const. None of the ADTs in this book use
const.



30 INTERFACES AND IMPLEMENTATIONS
2.5 Efficiency

Most of the implementations for the interfaces in this book use algo-
rithms and data structures for which the average-case running times are
no more than linear in N, the size of their inputs, and most can handle
large inputs. Interfaces that cannot deal with large inputs or for which
performance might be an important consideration specify performance
criteria. Implementations must meet these criteria and clients can expect
performance as good as but no better than these criteria specify.

All the interfaces in this book use simple but efficient algorithms.
More complicated algorithms and data structures may have better per-
formance when N is large, but it is usually small. Most implementations
stick to basic data structures such as arrays, linked lists, hash tables, and
trees, and combinations of these.

All but a few of the ADTs in this book use opaque pointers, so func-
tions such as Stack_empty are used to access fields hidden by the
implementations. The performance impact on real applications due to
the overhead of calling functions instead of accessing the fields directly
is almost always negligible. The improvements in reliability and in the
opportunities for catching runtime errors are considerable and outweigh
the slight costs in performance.

If objective measurements show that performance improvements are
really necessary, they should be made without changing the interface, for
example, by defining macros. When this approach is not possible, it’s
better to create a new interface that states its performance benefits
rather than changing an existing interface, which invalidates all of its
clients.

Further Reading

The importance of libraries of procedures and functions has been recog-
nized since the 1950s. Parnas (1972) is a classic paper on how to divide
programs into modules. This paper is over two decades old, yet it still
addresses issues that face programmers today.

C programmers use interfaces daily: the C library is a collection of 15
interfaces. The standard I/O interface, stdio.h, defines an ADT, FILE,
and operations on pointers to FILEs. Plauger (1992) gives a detailed
description of these 15 interfaces and suitable implementations in much
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the same way that this book tours a set of interfaces and imple-
mentations.

Modula-3 is a relatively new language that has linguistic support for
separating interfaces from implementations, and it originates the inter-
face-based terminology used in this book (Nelson 1991). The notions of
unchecked and checked runtime errors, and the T notation for ADTs, are
taken from Modula-3. Harbison (1992) is a textbook introduction to
Modula-3. Horning et al. (1993) describe the core interfaces in their Mod-
ula-3 system. Some of the interfaces in this book are adapted from those
interfaces. The text by Roberts (1995) uses interface-based design as the
organizing principle for teaching introductory computer science.

The importance of assertions is widely recognized, and some lan-
guages, such as Modula-3 and Eiffel (Meyer 1992), have assertion mecha-
nisms built into the language. Maguire (1993) devotes an entire chapter
to using assertions in C programs.

Programmers familiar with object-oriented programming may argue
that most of the ADTs in this book can be rendered, perhaps better, as
objects in object-oriented programming languages, such as C++ (Ellis and
Stroustrup 1990) and Modula-3. Budd (1991) is a tutorial introduction to
the object-oriented programming methodology and to some object-
oriented programming languages, including C++. The principles of inter-
face design illustrated in this book apply equally well to object-oriented
languages. Rewriting the ADTs in this book in C++, for example, is a use-
ful exercise for programmers making the switch from C to C++.

The C++ Standard Template Library — the STL — provides ADTs simi-
lar to those described in this book. STL makes good use of C++ templates
to instantiate ADTs for specific types (Musser and Saini 1996). For exam-
ple, STL provides a template for a vector datatype that can be used to
instantiate vectors of ints, strings, and so on. STL also provides a suite of
functions that manipulate template-generated types.

Exercises

2.1 A preprocessor macro and conditional compilation directives,
such as #if, could have been used to specify how division trun-
cates in Arith_div and Arith_mod. Explain why the explicit test
-13/5 == -2 is a better way to implement this test.

2.2 The -13/5 == -2 test used in Arith_div and Arith_mod works as
long as the compiler used to compile arith.c does arithmetic the
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same way as Arith_div and Arith_mod do when they are called.
This condition might not hold, for example, if arith.c were com-
piled by a cross-compiler that runs on machine X and generates
code for machine Y. Without using conditional compilation direc-
tives, fix arith.c so that such cross compilations produce code
that is guaranteed to work.

2.3 Like all ADTs in this book, the Stack interface omits the specifica-
tion “it is an unchecked runtime error to pass a foreign Stack_T to
any routine in this interface.” A foreign Stack_T is one that was
not manufactured by Stack_new. Revise stack.c so that it can
check for some occurrences of this error. One approach, for exam-
ple, is to add a field to the Stack_T structure that holds a bit pat-
tern unique to Stack_Ts returned by Stack_new.

2.4 It’s often possible to detect certain invalid pointers. For example, a
nonnull pointer is invalid if it specifies an address outside the cli-
ent’s address space, and pointers are often subject to alignment
restrictions; for example, on some systems a pointer to a double
must be a multiple of eight. Devise a system-specific macro
isBadPtr(p) that is one when p is an invalid pointer so that
occurrences of assert(ptr) can be replaced with assertions like
assert(!isBadPtr(ptr)).

2.5 There are many viable interfaces for stacks. Design and implement
some alternatives to the Stack interface. For example, one alter-
native is to specify a maximum size as an argument to Stack_new.
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ATOMS

n atom is a pointer to a unique, immutable sequence of zero or
more arbitrary bytes. Most atoms are pointers to null-terminated
strings, but a pointer to any sequence of bytes can be an atom.

There is only a single occurrence of any atom, which is why it’s called an
atom. Two atoms are identical if they point to the same location. Com-
paring two byte sequences for equality by simply comparing pointers is
one of the advantages of atoms. Another advantage is that using atoms
saves space because there’s only one occurrence of each sequence.

Atoms are often used as keys in data structures that are indexed by
sequences of arbitrary bytes instead of by integers. The tables and sets
described in Chapters 8 and 9 are examples.

3.1 Interface

The Atom interface is simple:

〈atom.h〉≡
#ifndef ATOM_INCLUDED
#define ATOM_INCLUDED

extern       int   Atom_length(const char *str);
extern const char *Atom_new   (const char *str, int len);
extern const char *Atom_string(const char *str);
extern const char *Atom_int   (long n);

#endif

A
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Atom_new accepts a pointer to a sequence of bytes and the number of
bytes in that sequence. It adds a copy of the sequence to the table of
atoms, if necessary, and returns the atom, which is a pointer to the copy
of the sequence in the atom table. Atom_new never returns the null
pointer. Once an atom is created, it exists for the duration of the client’s
execution. An atom is always terminated with a null character, which
Atom_new adds when necessary.

Atom_string is similar to Atom_new; it caters to the common use of
character strings as atoms. It accepts a null-terminated string, adds a
copy of that string to the atom table, if necessary, and returns the atom.
Atom_int returns the atom for the string representation of the long inte-
ger n — another common usage. Finally, Atom_length returns the length
of its atom argument.

It is a checked runtime error to pass a null pointer to any function in
this interface, to pass a negative len to Atom_new, or to pass a pointer
that is not an atom to Atom_length. It is an unchecked runtime error to
modify the bytes pointed to by an atom. Atom_length can take time to
execute proportional to the number of atoms. Atom_new, Atom_string,
and Atom_int can each raise the exception Mem_Failed.

3.2 Implementation

The implementation of Atom maintains the atom table. Atom_new,
Atom_string, and Atom_int search the atom table and possibly add
new elements to it, and Atom_length just searches it.

〈atom.c〉≡
〈includes 34〉
〈macros 37〉
〈data 36〉
〈functions 35〉

〈includes 34〉≡
#include "atom.h"

Atom_string and Atom_int can be implemented without knowing the
representation details of the atom table. Atom_string, for example, just
calls Atom_new:
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〈functions 35〉≡
const char *Atom_string(const char *str) {

assert(str);
return Atom_new(str, strlen(str));

}

〈includes 34〉+≡
#include <string.h>
#include "assert.h"

Atom_int first converts its argument to a string, then calls Atom_new:

〈functions 35〉+≡
const char *Atom_int(long n) {

char str[43];
char *s = str + sizeof str;
unsigned long m;

if (n == LONG_MIN)
m = LONG_MAX + 1UL;

else if (n < 0)
m = -n;

else
m = n;

do
*--s = m%10 + '0';

while ((m /= 10) > 0);
if (n < 0)

*--s = '-';
return Atom_new(s, (str + sizeof str) - s);

}

〈includes 34〉+≡
#include <limits.h>

Atom_int must cope with the asymmetrical range of two’s-
complement numbers and with the ambiguities of C’s division and mod-
ulus operators. Unsigned division and modulus are well defined, so
Atom_int can avoid the ambiguities of the signed operators by using
unsigned arithmetic.
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The absolute value of the most negative signed long integer cannot be
represented, because there is one more negative number than positive
number in two’s-complement systems. Atom_new thus starts by testing
for this single anomaly before assigning the absolute value of its argu-
ment to the unsigned long integer m. The value of LONG_MAX resides in
the standard header limits.h.

The loop forms the decimal string representation of m from right to
left; it computes the rightmost digit, divides m by 10, and continues until
m is zero. As each digit is computed, it’s stored at --s, which marches s
backward in str. If n is negative, a minus sign is stored at the beginning
of the string.

When the conversion is done, s points to the desired string, and this
string has &str[43] - s characters. str has 43 characters, which is
enough to hold the decimal representation of any integer on any conceiv-
able machine. Suppose, for example, that longs are 128 bits. The string
representation of any 128-bit signed integer in octal — base 8 — fits in
128/3 + 1 = 43 characters. The decimal representation can take no more
digits than the octal representation, so 43 characters are enough.

The 43 in the definition of str is an example of a “magic number,” and
it’s usually better style to define a symbolic name for such values to
ensure that the same value is used everywhere. Here, however, the value
appears only once, and sizeof is used whenever the value is used.
Defining a symbolic name might make the code easier to read, but it will
also make the code longer and clutter the name space. In this book, a
symbolic name is defined only when the value appears more than once,
or when it is part of an interface. The length of the hash table buckets
below — 2,048 — is another example of this convention.

A hash table is the obvious data structure for the atom table. The hash
table is an array of pointers to lists of entries, each of which holds one
atom:

〈data 36〉≡
static struct atom {

struct atom *link;
int len;
char *str;

} *buckets[2048];

The linked list emanating from buckets[i] holds those atoms that hash
to i. An entry’s link field points to the next entry on the list, the len
field holds the length of the sequence, and the str fields points to the
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sequence itself. For example, on a little endian computer with 32-bit
words and 8-bit characters, Atom_string("an atom") allocates the
struct atom shown in Figure 3.1, where the underscore character (_)
denotes a space. Each entry is just large enough to hold its sequence. Fig-
ure 3.2 shows the overall structure of the hash table.

Atom_new computes a hash number for the sequence given by
str[0..len-1] (or the empty sequence, if len is zero), reduces this hash
number modulo the number of elements in buckets, and searches the
list pointed to by that element of buckets. If it finds that str[0..len-1]
is already in the table, it simply returns the atom:

〈functions 35〉+≡
const char *Atom_new(const char *str, int len) {

unsigned long h;
int i;
struct atom *p;

assert(str);
assert(len >= 0);
〈h ← hash str[0..len-1] 39〉
h %= NELEMS(buckets);
for (p = buckets[h]; p; p = p->link)

if (len == p->len) {
for (i = 0; i < len && p->str[i] == str[i]; )

i++;
if (i == len)

return p->str;
}

〈allocate a new entry 39〉
return p->str;

}

〈macros 37〉≡
#define NELEMS(x) ((sizeof (x))/(sizeof ((x)[0])))

The definition of NELEMS illustrates a common C idiom: The number of
elements in an array is the size of the array divided by the size of each
element. sizeof is a compile-time operator, so this computation applies
only to arrays whose size is known at compile time. As this definition
illustrates, macro parameters are italicized to highlight where they are
used in the macro body.



38 ATOMS
Figure 3.1 Little endian layout of a struct atom for "an atom"

Figure 3.2 Hash table structure
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If str[0..len-1] isn’t in the table, Atom_new adds it by allocating a
struct atom and enough additional space to hold the sequence, copying
str[0..len-1] into the additional space and linking the new entry onto
the beginning of the list emanating from buckets[h]. The entry could
be appended to the end of the list, but adding it at the front of the list is
simpler.

〈allocate a new entry 39〉≡
p = ALLOC(sizeof (*p) + len + 1);
p->len = len;
p->str = (char *)(p + 1);
if (len > 0)

memcpy(p->str, str, len);
p->str[len] = '\0';
p->link = buckets[h];
buckets[h] = p;

〈includes 34〉+≡
#include "mem.h"

ALLOC is Mem’s primary allocation function, and it mimics the standard
library function malloc: its argument is the number of bytes needed.
Atom_new cannot use Mem’s NEW, which is illustrated in Stack_push,
because the number of bytes depends on len; NEW applies only when the
number of bytes is known at compile time. The call to ALLOC above allo-
cates the space for both the atom structure and for the sequence, and the
sequence is stored in the immediately succeeding bytes.

Hashing the sequence passed to Atom_new involves computing an
unsigned number to represent the sequence. Ideally, these hash numbers
should be distributed uniformly over the range zero to NELEMS(buck-
ets)−1 for N sequences. If they are so distributed, each list in buckets
will have N/NELEMS(buckets) elements, and the average time to search
for a sequence will be N/2•NELEMS(buckets). If N is less than, say,
2•NELEMS(buckets), the search time is essentially a constant.

Hashing is a well-studied subject, and there are many good hash func-
tions. Atom_new uses a simple table-lookup algorithm:

〈h ← hash str[0..len-1] 39〉≡
for (h = 0, i = 0; i < len; i++)

h = (h<<1) + scatter[(unsigned char)str[i]];
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scatter is a 256-entry array that maps bytes to random numbers, which
were generated by calling the standard library function rand. Experience
shows that this simple approach helps to more uniformly distribute the
hash values. Casting str[i] to an unsigned character avoids C’s ambigu-
ity about “plain” characters: they can be signed or unsigned. Without the
cast, values of str[i] that exceed 127 would yield negative indices on
machines that use signed characters.

〈data 36〉+≡
static unsigned long scatter[] = {
2078917053, 143302914, 1027100827, 1953210302, 755253631, 2002600785,

1405390230, 45248011, 1099951567, 433832350, 2018585307, 438263339,

813528929, 1703199216, 618906479, 573714703, 766270699, 275680090,

1510320440, 1583583926, 1723401032, 1965443329, 1098183682, 1636505764,

980071615, 1011597961, 643279273, 1315461275, 157584038, 1069844923,

471560540, 89017443, 1213147837, 1498661368, 2042227746, 1968401469,

1353778505, 1300134328, 2013649480, 306246424, 1733966678, 1884751139,

744509763, 400011959, 1440466707, 1363416242, 973726663, 59253759,

1639096332, 336563455, 1642837685, 1215013716, 154523136, 593537720,

704035832, 1134594751, 1605135681, 1347315106, 302572379, 1762719719,

269676381, 774132919, 1851737163, 1482824219, 125310639, 1746481261,

1303742040, 1479089144, 899131941, 1169907872, 1785335569, 485614972,

907175364, 382361684, 885626931, 200158423, 1745777927, 1859353594,

259412182, 1237390611, 48433401, 1902249868, 304920680, 202956538,

348303940, 1008956512, 1337551289, 1953439621, 208787970, 1640123668,

1568675693, 478464352, 266772940, 1272929208, 1961288571, 392083579,

871926821, 1117546963, 1871172724, 1771058762, 139971187, 1509024645,

109190086, 1047146551, 1891386329, 994817018, 1247304975, 1489680608,

706686964, 1506717157, 579587572, 755120366, 1261483377, 884508252,

958076904, 1609787317, 1893464764, 148144545, 1415743291, 2102252735,

1788268214, 836935336, 433233439, 2055041154, 2109864544, 247038362,

299641085, 834307717, 1364585325, 23330161, 457882831, 1504556512,

1532354806, 567072918, 404219416, 1276257488, 1561889936, 1651524391,

618454448, 121093252, 1010757900, 1198042020, 876213618, 124757630,

2082550272, 1834290522, 1734544947, 1828531389, 1982435068, 1002804590,

1783300476, 1623219634, 1839739926, 69050267, 1530777140, 1802120822,

316088629, 1830418225, 488944891, 1680673954, 1853748387, 946827723,

1037746818, 1238619545, 1513900641, 1441966234, 367393385, 928306929,

946006977, 985847834, 1049400181, 1956764878, 36406206, 1925613800,

2081522508, 2118956479, 1612420674, 1668583807, 1800004220, 1447372094,

523904750, 1435821048, 923108080, 216161028, 1504871315, 306401572,
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2018281851, 1820959944, 2136819798, 359743094, 1354150250, 1843084537,

1306570817, 244413420, 934220434, 672987810, 1686379655, 1301613820,

1601294739, 484902984, 139978006, 503211273, 294184214, 176384212,

281341425, 228223074, 147857043, 1893762099, 1896806882, 1947861263,

1193650546, 273227984, 1236198663, 2116758626, 489389012, 593586330,

275676551, 360187215, 267062626, 265012701, 719930310, 1621212876,

2108097238, 2026501127, 1865626297, 894834024, 552005290, 1404522304,

48964196, 5816381, 1889425288, 188942202, 509027654, 36125855,

365326415, 790369079, 264348929, 513183458, 536647531, 13672163,

313561074, 1730298077, 286900147, 1549759737, 1699573055, 776289160,

2143346068, 1975249606, 1136476375, 262925046, 92778659, 1856406685,

1884137923, 53392249, 1735424165, 1602280572

};

Atom_length can’t hash its argument because it doesn’t know its
length. But the argument must be an atom, so Atom_length can simply
scream through the lists in buckets comparing pointers. If it finds the
atom, it returns the atom’s length:

〈functions 35〉+≡
int Atom_length(const char *str) {

struct atom *p;
int i;

assert(str);
for (i = 0; i < NELEMS(buckets); i++)

for (p = buckets[i]; p; p = p->link)
if (p->str == str)

return p->len;
assert(0);
return 0;

}

assert(0) implements the checked runtime error that Atom_length
must be called only with an atom, not just a pointer to a string.
assert(0) is also used to signal conditions that are not supposed to
occur — so-called “can’t-happen” conditions.
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Further Reading

Atoms have long been used in LISP, which is the source of their name,
and in string-manipulation languages, such as SNOBOL4, which imple-
mented strings almost exactly as described in this chapter (Griswold
1972). The C compiler lcc (Fraser and Hanson 1995) has a module that is
similar to Atom and is the predecessor to Atom’s implementation. lcc
stores the strings for all identifiers and constants that appear in the
source program in a single table, and never deallocates them. Doing so
never consumes too much storage because the number of distinct
strings in C programs is remarkably small regardless of the size of the
source programs.

Sedgewick (1990) and Knuth (1973b) describe hashing in detail and
give guidelines for writing good hash functions. The hash function used
in Atom (and in lcc) was suggested by Hans Boehm.

Exercises

3.1 Most texts recommend using a prime number for the size of
buckets. Using a prime and a good hash function usually gives a
better distribution of the lengths of the lists hanging off of buck-
ets. Atom uses a power of two, which is sometimes explicitly cited
as a bad choice. Write a program to generate or read, say, 10,000
typical strings and measure Atom_new’s speed and the distribu-
tion of the lengths of the lists. Then change buckets so that it has
2,039 entries (the largest prime less than 2,048), and repeat the
measurements. Does using a prime help? How much does your
conclusion depend on your specific machine?

3.2 Scour the literature for better hash functions; likely sources are
Knuth (1973b), similar texts on algorithms and data structures
and the papers they cite, and texts on compilers, such as Aho,
Sethi, and Ullman (1986). Try these functions and measure their
benefits.

3.3 Explain why Atom_new doesn’t use the standard C library function
strncmp to compare sequences.

3.4 Here’s another way to declare the atom structure:
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struct atom {
struct atom *link;
int len;
char str[1];

};

A struct atom for a string of len bytes is allocated by
ALLOC(sizeof (*p) + len), which allocates space for the link
and len fields, and a str field long enough to hold len + 1 bytes.
This approach avoids the time and space required for the extra
indirection induced by declaring str to be a pointer. Unfortu-
nately, this “trick” violates the C standard, because clients access
the bytes beyond str[0], and the effect of these accesses is unde-
fined. Implement this approach and measure the cost of the indi-
rection. Are the savings worth violating the standard?

3.5 Atom_new compares the len field of struct atoms with the length
of the incoming sequence to avoid comparing sequences of differ-
ent lengths. If the hash numbers (not the indices into buckets) for
each atom were also stored in struct atoms, they could be com-
pared, too. Implement this “improvement” and measure the bene-
fits. Is it worthwhile?

3.6 Atom_length is slow. Revise Atom’s implementation so that
Atom_length’s running time is approximately the same as that of
Atom_new.

3.7 The Atom interface evolved to its present form because its func-
tions were the ones that clients used most often. There are other
functions and designs that might be useful, which this exercise
and those that follow explore. Implement

extern void Atom_init(int hint);

where hint estimates the number of atoms the client expects to
create. What checked runtime errors would you add to constrain
when Atom_init could be called?

3.8 There are several functions to deallocate atoms that extensions to
the Atom interface might provide. For example, the functions
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extern void Atom_free (const char *str);
extern void Atom_reset(void);

could deallocate the atom given by str and deallocate all atoms,
respectively. Implement these functions. Don’t forget to specify
and implement appropriate checked runtime errors.

3.9 Some clients start execution by installing a bunch of strings as
atoms for later use. Implement

extern void Atom_vload(const char *str, ...);
extern void Atom_aload(const char *strs[]);

Atom_vload installs the strings given in the variable length argu-
ment list up to a null pointer, and Atom_aload does the same for
a null-terminated array of pointers to strings.

3.10 Copying the strings can be avoided if the client promises not to
deallocate them, which is trivially true for string constants. Imple-
ment

extern const char *Atom_add(const char *str, int len);

which works like Atom_new but doesn’t make a copy of the
sequence. If you provide Atom_add and Atom_free (and
Atom_reset from Exercise 3.8), what checked runtime errors
must be specified and implemented?



4
EXCEPTIONS AND 

ASSERTIONS

hree kinds of errors occur in programs: user errors, runtime
errors, and exceptions. User errors are expected because they’re
likely to occur as the result of erroneous user input. Examples

include naming nonexistent files, specifying badly formed numbers in
spreadsheets, and presenting source programs with syntax errors to
compilers. Programs must plan for and deal with such errors. Usually,
functions that must cope with user errors return error codes — the
errors are a normal part of the computation.

The checked runtime errors described in previous chapters are at the
other end of the error spectrum. They are not user errors. They are never
expected and always indicate program bugs. Thus, there is no way to
recover from these kinds of errors; the application must be terminated
gracefully. The implementations in this book use assertions to catch
these kinds of errors. Handling assertions is described in Section 4.3.
Assertions always cause the program to halt, perhaps in a way that
depends on the machine or the application.

Exceptions occupy the middle ground between user errors and pro-
gram bugs. An exception is an error that may be rare and perhaps unex-
pected, but from which recovery may be possible. Some exceptions
mirror the cababilities of the machine; examples are arithmetic overflow
and underflow and stack overflow. Other exceptions indicate conditions
detected by the operating system, perhaps initiated by the user, such as
hitting an “interrupt” key or getting a write error while writing a file.
These kinds of exceptions are often delivered by signals in UNIX systems

T
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and processed by signal handlers. Exceptions may also occur when lim-
ited resources are exhausted, such as when an application runs out of
memory, or a user specifies a spreadsheet that’s too big.

Exceptions don’t happen often, so functions in which they might occur
don’t usually return error codes; this would clutter the code for the rare
cases and obscure the common cases. Applications raise exceptions,
which are handled by recovery code, if recovery is possible. The scope of
an exception is dynamic: when an exception is raised, it is handled by the
handler that was most recently instantiated. Transferring control to a
handler is like a nonlocal goto — the handler may have been instantiated
in a routine far from the one in which the exception was raised.

Some languages have built-in facilities for instantiating handlers and
raising exceptions. In C, the standard library functions setjmp and
longjmp form the basis for building a structured exception facility. The
short story is that setjmp instantiates a handler and longjmp raises an
exception.

An example illustrates the long story. Suppose the function allocate
calls malloc to allocate n bytes, and returns the pointer returned by
malloc. If, however, malloc returns the null pointer, which indicates
that the space requested cannot be allocated, allocate wants to raise
the Allocate_Failed exception. The exception itself is declared as a
jmp_buf, which is in the standard header setjmp.h:

#include <setjmp.h>

int Allocation_handled = 0;
jmp_buf Allocate_Failed;

Allocation_handled is zero unless a handler has been instantiated,
and allocate checks Allocation_handled before raising the
exception:

void *allocate(unsigned n) {
void *new = malloc(n);

if (new)
return new;

if (Allocation_handled)
longjmp(Allocate_Failed, 1);

assert(0);
}
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allocate uses an assertion to implement a checked runtime error when
allocation fails and no handler has been instantiated.

A handler is instantiated by calling setjmp(Allocate_Failed),
which returns an integer. The interesting feature of setjmp is that it can
return twice. The call to setjmp returns zero. The call to longjmp in
allocate causes the second return of the value given by longjmp’s sec-
ond argument, which is one in the example above. Thus, a client handles
an exception by testing the value returned by setjmp:

char *buf;
Allocation_handled = 1;
if (setjmp(Allocate_Failed)) {

fprintf(stderr, "couldn't allocate the buffer\n");
exit(EXIT_FAILURE);

}
buf = allocate(4096);
Allocation_handled = 0;

When setjmp returns zero, execution continues with the call to allo-
cate. If the allocation fails, the longjmp in allocate causes setjmp to
return again, this time with the value one, so execution continues with
the calls to fprintf and exit.

This example doesn’t cope with nested handlers, which would occur if
the code above called, say, makebuffer, which itself instantiates a han-
dler and called allocate. Nested handlers must be provided because cli-
ents can’t know about the handlers instantiated by an implementation
for its own purposes. Also, the Allocation_handled flag is awkward;
failing to set it or clear it at the right times causes chaos. The Except
interface, described in the next section, handles these omissions.

4.1 Interface

The Except interface wraps the setjmp/longjmp facility in a set of mac-
ros and functions that collaborate to provide a structured exception
facility. It isn’t perfect, but it avoids the errors outlined above, and the
macros clearly identify where exceptions are used.

An exception is a global or static variable of type Except_T:

〈except.h〉≡
#ifndef EXCEPT_INCLUDED
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#define EXCEPT_INCLUDED
#include <setjmp.h>

#define T Except_T
typedef struct T {

const char *reason;
} T;

〈exported types 53〉
〈exported variables 53〉
〈exported functions 48〉
〈exported macros 48〉

#undef T
#endif

Except_T structures have only one field, which can be initialized to a
string that describes the exception. This string is printed when an
unhandled exception occurs.

Exception handlers manipulate the addresses of exceptions. Excep-
tions must be global or static variables so that their addresses identify
them uniquely. It is an unchecked runtime error to declare an exception
as a local variable or as a parameter.

An exception e is raised by the RAISE macro or by the function
Except_raise:

〈exported macros 48〉≡
#define RAISE(e) Except_raise(&(e), __FILE__, __LINE__)

〈exported functions 48〉≡
void Except_raise(const T *e, const char *file,int line);

It is a checked runtime error to pass a null e to Except_raise.
Handlers are instantiated by the TRY-EXCEPT and TRY-FINALLY state-

ments, which are implemented with macros. These statements handle
nested exceptions and manage exception-state data. The syntax of the
TRY-EXCEPT statement is

TRY

EXCEPT( )
S

e1
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EXCEPT( )

…
EXCEPT( )

ELSE

END_TRY

The TRY-EXCEPT statement establishes handlers for exceptions named
, , ..., , and executes the statements S. If no exceptions are raised

by S, the handlers are dismantled and execution continues at the state-
ment after the END_TRY. If S raises an exception e where e is one of

, the execution of S is interrupted and control transfers immedi-
ately to the statements following the relevant EXCEPT clause. The han-
dlers are dismantled, the handler statements  in the EXCEPT clause are
executed, and execution continues after the END_TRY.

If S raises an exception that is not one of , the handlers are dis-
mantled, the statements following ELSE are executed, and execution con-
tinues after the END_TRY. The ELSE clause is optional.

If S raises an exception that is not handled by one of the , the han-
dlers are dismantled, and the exception is passed to the handlers
established by the previously executed TRY-EXCEPT or TRY-FINALLY
statement.

TRY-END_TRY is syntactically equivalent to a statement. TRY intro-
duces a new scope, which ends at the corresponding END_TRY.

Rewriting the example at the end of the previous section illustrates
the use of these macros. Allocate_Failed becomes an exception, which
allocate raises if malloc returns the null pointer:

Except_T Allocate_Failed = { "Allocation failed" };

void *allocate(unsigned n) {
void *new = malloc(n);

if (new)
return new;

RAISE(Allocate_Failed);

S1
e2

S2

en
Sn

S0

e1 e2 en

e1 en–

Si

e1 en–

Si
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assert(0);
}

If the client code wants to handle this exception, it calls allocate from
within a TRY-EXCEPT statement:

extern Except_T Allocate_Failed;
char *buf;
TRY

buf = allocate(4096);
EXCEPT(Allocate_Failed)

fprintf(stderr, "couldn't allocate the buffer\n");
exit(EXIT_FAILURE);

END_TRY;

TRY-EXCEPT statements are implemented with setjmp and longjmp,
so Standard C’s caveats about the use of these functions apply to TRY-
EXCEPT statements. Specifically, if S changes an automatic variable, the
change may not survive if an exception causes execution to continue in
any of the handler statements  or after the closing END_TRY. For
example, the fragment

static Except_T e;
int i = 0;
TRY

i++;
RAISE(e);

EXCEPT(e)
;

END_TRY;
printf("%d\n", i);

can print 0 or 1, depending on the implementation-dependent details of
setjmp and longjmp. Automatic variables that are changed in S must be
declared volatile; for example, changing the declaration for i to

volatile int i = 0;

causes the example above to print 1.
The syntax of the TRY-FINALLY statement is

Si
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TRY

FINALLY

END_TRY

If no exceptions are raised by S,  is executed and execution continues
at the statement after the END_TRY. If S raises an exception, the execu-
tion of S is interrupted and control transfers immediately to . After 
is executed, the exception that caused its execution is reraised so that it
can be handled by a previously instantiated handler. Note that  is exe-
cuted in both cases. Handlers can reraise exceptions explicitly with the
RERAISE macro:

〈exported macros 48〉+≡
#define RERAISE Except_raise(Except_frame.exception, \

Except_frame.file, Except_frame.line)

The TRY-FINALLY statement is equivalent to

TRY

ELSE

RERAISE;
END_TRY;

Note that  is executed whether S raises an exception or not.
One purpose of the TRY-FINALLY statement is to give clients an

opportunity to “clean up” when an exception occurs. For example,

FILE *fp = fopen(…);
char *buf;
TRY

buf = allocate(4096);
…

FINALLY
fclose(fp);

END_TRY;

S

S1

S1

S1 S1

S1

S

S1

S1

S1
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closes the file opened on fp whether allocation fails or succeeds. If allo-
cation does fail, another handler must deal with Allocate_Failed.

If  in a TRY-FINALLY statement or any of the handlers in a TRY-
EXCEPT statement raises an exception, it is handled by the previously
instantiated handler.

The degenerate statement

TRY
S

END_TRY

is equivalent to

TRY
S

FINALLY
;

END_TRY

The final macro in the interface is

〈exported macros 48〉+≡
#define RETURN switch (〈pop 56〉,0) default: return

The RETURN macro is used instead of return statements inside TRY state-
ments. It is a unchecked runtime error to execute the C return statement
inside a TRY-EXCEPT or TRY-FINALLY statement. If any of the statements
in a TRY-EXCEPT or TRY-FINALLY must do a return, they must do so with
this macro instead of with the usual C return statement. This switch
statement is used in this macro so that both RETURN and RETURN e
expand into one syntactically correct C statement. The details of 〈pop 56〉
are described in the next section.

The macros in the Except interface are admittedly crude and some-
what brittle. Their unchecked runtime errors are particularly trouble-
some, and can be particularly difficult bugs to find. They suffice for
most applications because exceptions should be used sparingly — only a
handful in a large application. If exceptions proliferate, it’s usually a sign
of more serious design errors.

S1
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4.2 Implementation

The macros and functions in the Except interface collaborate to main-
tain a stack of structures that record the exception state and the instanti-
ated handlers. The env field of this structure is a jmp_buf, which is used
by setjmp and longjmp; this stack thus handles nested exceptions.

〈exported types 53〉≡
typedef struct Except_Frame Except_Frame;
struct Except_Frame {

Except_Frame *prev;
jmp_buf env;
const char *file;
int line;
const T *exception;

};

〈exported variables 53〉≡
extern Except_Frame *Except_stack;

Except_stack points to the top exception frame on the exception stack,
and the prev field of each frame points to its predecessor. As suggested
by the definition of RERAISE in the previous section, raising an exception
stores the address of the exception in the exception field, and stores
the exception coordinates — the file and line number where the excep-
tion was raised — in the file and line fields.

The TRY clause pushes a new Except_Frame onto the exception stack
and calls setjmp. Except_raise, which is called by RAISE and RERAISE,
fills in the exception, file, and line fields in the top frame, pops the
Except_Frame off the exception stack, and calls longjmp. EXCEPT
clauses test the exception field of this frame to determine which han-
dler applies. The FINALLY clause executes its clean-up code and reraises
the exception stored in the popped frame.

If an exception occurs and control reaches an END_TRY clause without
handling it, the exception is reraised.

The macros TRY, EXCEPT, ELSE, FINALLY, and END_TRY collaborate to
translate a TRY-EXCEPT statement into a statement of the form

do {
create and push an Except_Frame
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if (first return from setjmp) {
S

} else if (exception is ) {

…
} else if (exception is ) {

} else {

}
if (an exception occurred and wasn’t handled)

RERAISE;
} while (0)

The do-while statement makes the TRY-EXCEPT syntactically equivalent
to a C statement so that it can be used like any other C statement. It can,
for example, be used as the consequent of an if statement. Figure 4.1
shows the code generated for the general TRY-EXCEPT statement The
shaded boxes highlight the code resulting from the expansion of the TRY
and END_TRY macros; boxes surround the code from the EXCEPT macro,
and the double-lined box surrounds the ELSE code. Figure 4.2 shows the
expansion of the TRY-FINALLY statement; the box surrounds the
FINALLY code.

The space for an Except_Frame is allocated simply by declaring a
local variable of that type inside the compound statement in the body of
the do-while begun by TRY:

〈exported macros 48〉+≡
#define TRY do { \

volatile int Except_flag; \
Except_Frame Except_frame; \
〈push 56〉  \
Except_flag = setjmp(Except_frame.env); \
if (Except_flag == Except_entered) {

There are four states within a TRY statement, as suggested by the follow-
ing enumeration identifiers.

〈exported types 53〉+≡
enum { Except_entered=0, Except_raised,
       Except_handled,   Except_finalized };
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The first return from setjmp sets Except_flag to Except_entered,
which indicates that a TRY statement has been entered and an exception
frame has been pushed onto the exception stack. Except_entered must
be zero, because the initial call to setjmp returns zero; subsequent
returns from setjmp set it to Except_raised, which indicates that an

do {
volatile int Except_flag;
Except_Frame Except_frame;
Except_frame.prev = Except_stack;
Except_stack = &Except_frame;
Except_flag = setjmp(Except_frame.env);
if (Except_flag == Except_entered) {

S
if (Except_flag == Except_entered)

Except_stack = Except_stack->prev;
} else if (Except_frame.exception == &( )) {

Except_flag = Except_handled;

if (Except_flag == Except_entered)
Except_stack = Except_stack->prev;

} else if (Except_frame.exception == &( )) {
Except_flag = Except_handled;

if (Except_flag == Except_entered)
Except_stack = Except_stack->prev;

} …
} else if (Except_frame.exception == &( )) {

Except_flag = Except_handled;

if (Except_flag == Except_entered)
Except_stack = Except_stack->prev;

} else {
Except_flag = Except_handled;

if (Except_flag == Except_entered)
Except_stack = Except_stack->prev;

}
if (Except_flag == Except_raised)

Except_raise(Except_frame.exception,
Except_frame.file, Except_frame.line);

} while (0)

Figure 4.1 Expansion of the TRY-EXCEPT statement
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exception occurred. Handlers set Except_flag to Except_handled to
indicate that they’ve handled the exception.

The Except_Frame is pushed onto the exception stack by adding it to
the head of the linked list of Except_Frame structures pointed to by
Except_stack, and the top frame is popped by removing it from that
list:

〈push 56〉≡
Except_frame.prev = Except_stack; \
Except_stack = &Except_frame;

〈pop 56〉≡
Except_stack = Except_stack->prev

The EXCEPT clauses become the else-if statements shown in Figure
4.1.

〈exported macros 48〉+≡
#define EXCEPT(e) \

do {
volatile int Except_flag;
Except_Frame Except_frame;
Except_frame.prev = Except_stack;
Except_stack = &Except_frame;
Except_flag = setjmp(Except_frame.env);
if (Except_flag == Except_entered) {

S
if (Except_flag == Except_entered)

Except_stack = Except_stack->prev;
} {

if (Except_flag == Except_entered)
Except_flag = Except_finalized;

if (Except_flag == Except_entered)
Except_stack = Except_stack->prev;

}
if (Except_flag == Except_raised)

Except_raise(Except_frame.exception,
Except_frame.file, Except_frame.line);

} while (0)

Figure 4.2 Expansion of the TRY-FINALLY statement

S1
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〈pop if this chunk follows S 57〉 \
} else if (Except_frame.exception == &(e)) { \

Except_flag = Except_handled;

〈pop if this chunk follows S 57〉≡
if (Except_flag == Except_entered) 〈pop 56〉;

Using macros for exceptions leads to some contorted code, as the chunk
〈pop if this chunk follows S 57〉 illustrates. This chunk, which appears
before the else-if in the definition of EXCEPT above, pops the exception
stack only in the first EXCEPT clause. If no exception occurs while execut-
ing S, Except_flag remains Except_entered, so when control reaches
the if statement, the exception stack is popped. The second and subse-
quent EXCEPT clauses follow handlers in which Except_flag has been
changed to Except_handled. For these, the exception stack has already
been popped, and the if statement in 〈pop if this chunk follows S 57〉 pro-
tects against popping it again.

The ELSE clause is like an EXCEPT clause, but the else-if is just an else:

〈exported macros 48〉+≡
#define ELSE \

〈pop if this chunk follows S 57〉 \
} else { \

Except_flag = Except_handled;

Similarly, the FINALLY clause is like an ELSE clause without the else: Con-
trol falls into the clean-up code.

〈exported macros 48〉+≡
#define FINALLY \

〈pop if this chunk follows S 57〉 \
} { \

if (Except_flag == Except_entered) \
Except_flag = Except_finalized;

Except_flag is changed from Except_entered to Except_finalized
here to indicate that an exception did not occur but that a FINALLY
clause did appear. If an exception occurred, Except_flag is left at
Except_raised so that it can be reraised after the clean-up code has
been executed. The exception is reraised by testing whether
Except_flag is equal to Except_raised in the expansion for END_TRY.
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If an exception did not occur, Except_flag will be Except_entered or
Except_finalized:

〈exported macros 48〉+≡
#define END_TRY \

〈pop if this chunk follows S 57〉 \
} if (Except_flag == Except_raised) RERAISE; \

} while (0)

The implementation of Except_raise in except.c is the last piece of
the puzzle:

〈except.c〉≡
#include <stdlib.h>
#include <stdio.h>
#include "assert.h"
#include "except.h"
#define T Except_T

Except_Frame *Except_stack = NULL;

void Except_raise(const T *e, const char *file,
int line) {
Except_Frame *p = Except_stack;

assert(e);
if (p == NULL) {

〈announce an uncaught exception 59〉
}
p->exception = e;
p->file = file;
p->line = line;
〈pop 56〉;
longjmp(p->env, Except_raised);

}

If there is an Except_Frame at the top of the exception stack,
Except_raise fills in the exception, file, and line fields, pops the
exception stack, and calls longjmp. The corresponding call to setjmp
will return Except_raised; Except_raised will be assigned to
Except_flag in the TRY-EXCEPT or TRY-FINALLY statement, and the
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appropriate handler will be executed. Except_raise pops the exception
stack so that if an exception occurs in one of the handlers, it will be han-
dled by the TRY-EXCEPT statement whose exception frame is now
exposed at the top of the exception stack.

If the exception stack is empty, there’s no handler, so Except_raise
has little choice but to announce the unhandled exception and halt:

〈announce an uncaught exception 59〉≡
fprintf(stderr, "Uncaught exception");
if (e->reason)

fprintf(stderr, " %s", e->reason);
else

fprintf(stderr, " at 0x%p", e);
if (file && line > 0)

fprintf(stderr, " raised at %s:%d\n", file, line);
fprintf(stderr, "aborting...\n");
fflush(stderr);
abort();

abort is the standard C library function that aborts execution, some-
times with machine-dependent side effects. It might, for example, start a
debugger or simply write a dump of memory.

4.3 Assertions

The standard requires that header assert.h define assert(e) as a
macro that provides diagnostic information. assert(e) evaluates e and,
if e is zero, writes diagnostic information on the standard error and
aborts execution by calling the standard library function abort. The
diagnostic information includes the assertion that failed (the text of e)
and the coordinates (the file and line number) at which the assert(e)
appears. The format of this information is implementation-defined.
assert(0) is a good way to signal conditions that “can’t happen.” Alter-
natively, assertions like

assert(!"ptr==NULL -- can’t happen")

display more meaningful diagnostics.
assert.h also uses, but does not define, the macro NDEBUG. If NDEBUG

is defined, then assert(e) must be equivalent to the vacuous expres-
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sion ((void)0). Thus, programmers can turn off assertions by defining
NDEBUG and recompiling. Since e might not be executed, it’s important
that it never be an essential computation that has side effects, such as an
assignment.

assert(e) is an expression, so most versions of assert.h are logi-
cally equivalent to

#undef assert
#ifdef NDEBUG
#define assert(e) ((void)0)
#else
extern void assert(int e);
#define assert(e) ((void)((e)|| \

(fprintf(stderr, "%s:%d: Assertion failed: %s\n", \
__FILE__, (int)__LINE__, #e), abort(), 0)))

#endif

(A “real” version of assert.h differs from this one because it’s not
allowed to include stdio.h in order to use fprintf and stderr.) An
expression like ||  usually appears in conditional contexts, such as
if statements, but it can also appear alone as a statement. When it does,
the effect is equivalent to the statement

if (!( )) ;

The definition of assert uses ||  because assert(e) must expand
to an expression, not a statement.  is a comma expression whose
result is a value, which is required by the || operator, and the entire
expression is cast to void because the standard stipulates that
assert(e) returns no value. In a Standard C preprocessor, the locution
#e generates a string literal whose contents are the characters in the text
for the expression e.

The Assert interface defines assert(e) as specified by the standard,
except that an assertion failure raises the exception Assert_Failed
instead of aborting execution, and does not provide the text of the asser-
tion e:

〈assert.h〉≡
#undef assert
#ifdef NDEBUG
#define assert(e) ((void)0)

e1 e2
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#else
#include "except.h"
extern void assert(int e);
#define assert(e) ((void)((e)||(RAISE(Assert_Failed),0)))
#endif

〈exported variables 53〉+≡
extern const Except_T Assert_Failed;

Assert mimics the standard’s definitions so that the two assert.h
headers can be used interchangeably, which is why Assert_Failed
appears in except.h. The implementation of this interface is trivial:

〈assert.c〉≡
#include "assert.h"

const Except_T Assert_Failed = { "Assertion failed" };

void (assert)(int e) {
assert(e);

}

The parentheses around the name assert in the function definition sup-
press expansion of the macro assert and thus define the function, as
required by the interface.

If clients don’t handle Assert_Failed, then an assertion failure
causes the program to abort with a message like

Uncaught exception Assertion failed raised at stmt.c:201
aborting...

which is functionally equivalent to the diagnostics issued by machine-
specific versions of assert.h.

Packaging assertions so that they raise exceptions when they fail helps
solve the dilemma about what to do with assertions in production pro-
grams. Some programmers advise against leaving assertions in produc-
tion programs, and this advice is supported by the standard’s use of
NDEBUG in assert.h. The two reasons most often cited for omitting
assertions are efficiency and the possibility of cryptic diagnostics.

Assertions do take time, so removing them can only make programs
faster. The difference in execution time with and without assertions can
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be measured, however, and that difference is usually tiny. Removing
assertions for efficiency reasons is like making any other change to
improve execution time: The change should be made only when objective
measurements support it.

When measurements do show that an assertion is too costly, it’s some-
times possible to move the assertion to reduce its cost without losing its
benefit. For example, suppose h contains an assertion that costs too
much, that both f and g call h, and that measurements show most of the
time is due to the call from g, which calls h from within a loop. Careful
analysis may reveal that the assertion in h can be moved to both f and g,
and placed before the loop in g.

The more serious problem with assertions is that they can cause diag-
nostics, such as the assertion-failure diagnostic above, that will mystify
users. But omitting assertions replaces these diagnostics with a greater
evil. When an assertion fails, the program is wrong. If it continues, it
does so with unpredictable results and will most likely crash. Messages
like

General protection fault at 3F60:40EA

or

Segmentation fault -- core dumped

are no better than the assertion-failed diagnostic shown above. Worse, a
program that continues after an assertion failure would have stopped it
may corrupt user data; for example, an editor may destroy a user’s files.
This behavior is inexcusable.

The problem with cryptic assertion-failure diagnostics can be handled
with a TRY-EXCEPT statement at the top level of the production version
of the program that catches all uncaught exceptions and issues a more
helpful diagnostic. For example:

#include <stdlib.h>
#include <stdio.h>
#include "except.h"

int main(int argc, char *argv[]) {
TRY

edit(argc, argv);
ELSE
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fprintf(stderr,
"An internal error has occurred from which there is "
"no recovery.\nPlease report this error to "
"Technical Support at 800-777-1234.\nNote the "
"following message, which will help our support "
"staff\nfind the cause of this error.\n\n")

RERAISE;
END_TRY;
return EXIT_SUCCESS;

}

When an uncaught exception occurs, this handler precedes the cryptic
diagnostic with instructions for reporting the bug. For an assertion fail-
ure, it prints

An internal error has occurred from which there is no recovery.
Please report this error to Technical Support at 800-777-1234.
Note the following message, which will help our support staff
find the cause of this error.

Uncaught exception Assertion failed raised at stmt.c:201
aborting...

Further Reading

Several languages have built-in exception mechanisms; examples include
Ada, Modula-3 (Nelson 1991), Eiffel (Meyer 1992), and C++ (Ellis and
Stroustrup 1990). Except’s TRY-EXCEPT statement is modeled after
Modula-3’s TRY-EXCEPT statement.

Several exception mechanisms have been proposed for C; they all pro-
vide facilities similar to the TRY-EXCEPT statement, sometimes with vari-
ations in syntax and semantics. Roberts (1989) describes an interface for
an exception facility that is equivalent to the one provided by Except.
His implementation is similar, but it’s more efficient when an exception
is raised. Except_raise calls longjmp to transfer to a handler. If that
handler doesn’t handle the exception, Except_raise is called again, and
so is longjmp. If the handler for the exception is N exception frames
down the exception stack, Except_raise and longjmp are called N
times. Roberts’s implementation makes one call to the appropriate han-
dler or to the first FINALLY clause. To do this, it must place an upper
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bound on the number of exception handlers in a TRY-EXCEPT statement.
Some C compilers, like Microsoft’s, provide structured exception facili-
ties as language extensions.

Some languages have built-in assertion mechanisms; Eiffel is an exam-
ple. Most languages use facilities similar to C’s assert macro or other
compiler directives to specify assertions. For example, Digital’s Modula-3
compiler recognizes comments of the form <*ASSERT expression*> as
compiler pragmas that specify assertions. Maguire (1993) devotes an
entire chapter to using assertions in C programs.

Exercises

4.1 What’s the effect of a statement that has both EXCEPT and
FINALLY clauses? These are statements of the form

TRY

EXCEPT( )

…
EXCEPT( )

FINALLY

END_TRY

4.2 Change the Except interface and implementation so that
Except_raise makes only one call to longjmp to reach the
appropriate handler or FINALLY clause, as described above and
implemented by Roberts (1989).

4.3 UNIX systems use signals to announce some exceptional condi-
tions, such as floating overflow and when a user strikes an inter-
rupt key. Study the UNIX signal repertoire and design and
implement an interface for a signal handler that turns signals into
exceptions.

4.4 Some systems print a stack trace when a program aborts. This
shows the state of the procedure-call stack when the program
aborted, and it may include procedure names and arguments.
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Change Except_raise to print a stack trace when it announces an
uncaught exception. Depending on the calling conventions on
your computer, you may be able to print the procedure names and
the line numbers of the calls. For example, the trace might look
like this:

Uncaught exception Assertion failed
raised in whilestmt() at stmt.c:201
called from statement() at stmt.c:63
called from compound() at decl.c:122
called from funcdefn() at decl.c:890
called from decl() at decl.c:95
called from program() at decl.c:788
called from main() at main.c:34
aborting...

4.5 On some systems, a program can invoke a debugger on itself when
it has detected an error. This facility is particularly useful during
development, when assertion failures may be common. If your
system supports this facility, change Except_raise to start the
debugger instead of calling abort after it announces an uncaught
exception. Try to make your implementation work in production
programs; that is, make it figure out at runtime whether or not to
invoke the debugger.

4.6 If you have access to a C compiler, like lcc (Fraser and Hanson
1995), modify it to support exceptions, TRY statements, and
RAISE and RERAISE expressions with the syntax and semantics
described in this chapter, without using setjmp and longjmp. You
will need to implement a mechanism similar to setjmp and
longjmp, but it can be specialized for exception handling. For
example, it’s usually possible to instantiate the handlers with only
a few instructions. Warning: This exercise is a large project.





5
MEMORY MANAGEMENT

ll nontrivial C programs allocate memory at runtime. The stan-
dard C library provides four memory-management routines:
malloc, calloc, realloc, and free. The Mem interface repack-

ages these routines as a set of macros and routines that are less prone to
error and that provide a few additional capabilities.

Unfortunately, memory-management bugs are common in C pro-
grams, and they are often difficult to diagnose and fix. For example, the
fragment

p = malloc(nbytes);
…
free(p);

calls malloc to allocate a block of nbytes of memory, assigns the
address of the first byte of that block to p, uses p and the block it points
to, and frees the block. After the call to free, p holds a dangling pointer
— a pointer that refers to memory that logically does not exist. Subse-
quently dereferencing p is an error, although if the block hasn’t been
reallocated for another purpose, the error might go undetected. This
behavior is what makes these kinds of access errors hard to diagnose:
when the error is detected, it may manifest itself at a place and time far
away from the origin of the error.

The fragment

p = malloc(nbytes);
…
free(p);

A
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…
free(p);

illustrates another error: deallocating free memory. This error usually
corrupts the data structures used by the memory-management func-
tions, but it may go undetected until a subsequent call to one of those
functions.

Another error is deallocating memory that wasn’t allocated by malloc,
calloc, or realloc. For example, the intent of

char buf[20], *p;
if (n >= sizeof buf)

p = malloc(n);
else

p = buf;
…
free(p);

is to avoid allocation when n is less than the size of buf; but the code
erroneously calls free even when p points to buf. Again, this error usu-
ally corrupts the memory-management data structures and isn’t detected
until later.

Finally, the function

void itoa(int n, char *buf, int size) {
char *p = malloc(43);

sprintf(p, "%d", n);
if (strlen(p) >= size - 1) {

while (--size > 0)
*buf++ = '*';

*buf = '\0';
} else

strcpy(buf, p);
}

fills buf[0..size-1] with the decimal representation of the integer n or
with asterisks if that representation takes more than size-1 characters.
This code looks robust, but it contains at least two errors. First, malloc
returns the null pointer if the allocation fails, and the code fails to test
for this condition. Second, the code creates a memory leak: it doesn’t
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deallocate the memory it allocates. The program will slowly consume
memory each time itoa is called. If itoa is called often, the program will
eventually run out memory and fail. Also, itoa works correctly when
size is less than two, but it does so by setting buf[0] to the null charac-
ter. Perhaps a better design would be to insist that size exceed two and
to enforce that constraint with a checked runtime error.

The macros and routines in the Mem interface offer some protection
from these kinds of memory-management errors. They don’t eliminate
all such errors, however. For example, they can’t guard against derefer-
encing corrupt pointers or using pointers to local variables that have
gone out of scope. C novices often commit the latter error; this appar-
ently simpler version of itoa is an example:

char *itoa(int n) {
char buf[43];

sprintf(buf, "%d", n);
return buf;

}

itoa returns the address of its local array buf, but once itoa returns,
buf no longer exists.

5.1 Interface

The Mem interface exports exceptions, routines, and macros:

〈mem.h〉≡
#ifndef MEM_INCLUDED
#define MEM_INCLUDED
#include "except.h"

〈exported exceptions 70〉
〈exported functions 70〉
〈exported macros 70〉

#endif

Mem’s allocation functions are similar to those in the standard C
library, but they don’t accept zero sizes and never return null pointers:
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〈exported exceptions 70〉≡
extern const Except_T Mem_Failed;

〈exported functions 70〉≡
extern void *Mem_alloc (long nbytes,

const char *file, int line);
extern void *Mem_calloc(long count, long nbytes,

const char *file, int line);

Mem_alloc allocates a block of at least nbytes and returns a pointer to
the first byte. The block is aligned on an addressing boundary that is
suitable for the data with the strictest alignment requirement. The con-
tents of the block are uninitialized. It is a checked runtime error for
nbytes to be nonpositive.

Mem_calloc allocates a block large enough to hold an array of count
elements each of size nbytes, and returns a pointer to the first element.
The block is aligned as for Mem_alloc, and is initialized to zeros. The
null pointer and 0.0 are not necessarily represented by zeros, so
Mem_calloc may not initialize them correctly. It is a checked runtime
error for count or nbytes to be nonpositive.

The last two arguments to Mem_alloc and Mem_calloc are the file
name and line number of the location of the call. These are supplied by
the following macros, which are the usual way to invoke these functions.

〈exported macros 70〉≡
#define ALLOC(nbytes) \

Mem_alloc((nbytes), __FILE__, __LINE__)
#define CALLOC(count, nbytes) \

Mem_calloc((count), (nbytes), __FILE__, __LINE__)

If Mem_alloc or Mem_calloc cannot allocate the memory requested,
they raise Mem_Failed and pass file and line to Except_raise so that
the exception reports the location of the call. If file is the null pointer,
Mem_alloc and Mem_calloc supply the locations within their implemen-
tations that raise Mem_Failed.

Many allocations have the form

struct T *p;
p = Mem_alloc(sizeof (struct T));

which allocates a block for an instance of the structure T and returns a
pointer to that block. A better version of this idiom is
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p = Mem_alloc(sizeof *p);

Using sizeof *p instead of sizeof (struct T) works for any pointer
type, except void pointers, and sizeof *p is independent of the
pointer’s referent type. If the type of p is changed, this allocation
remains correct, but the one with sizeof (struct T) must be changed
to reflect the change in p’s type. That is,

p = Mem_alloc(sizeof (struct T));

is correct only if p is really a pointer to a struct T. If p is changed to a
pointer to another structure and the call isn’t updated, the call may allo-
cate too much memory, which wastes space, or too little memory, which
is disastrous, because the client may scribble on unallocated storage.

This allocation idiom is so common that Mem provides macros that
encapsulate both the allocation and the assignment:

〈exported macros 70〉+≡
#define  NEW(p) ((p) = ALLOC((long)sizeof *(p)))
#define NEW0(p) ((p) = CALLOC(1, (long)sizeof *(p)))

NEW(p) allocates an uninitialized block to hold *p and sets p to the
address of that block. NEW0(p) does the same, but also clears the block.
NEW is provided on the assumption that most clients initialize a block
immediately after allocating it. The argument to the compile-time opera-
tor sizeof is used only for its type; it is not evaluated at runtime. So NEW
and NEW0 evaluate p exactly once, and it’s safe to use an expression that
has side effects as an actual argument to either macro, such as
NEW(a[i++]), for example.

malloc and calloc take arguments of type size_t; sizeof yields a
constant of type size_t. The type size_t is an unsigned integral type
capable of representing the size of the largest object that can be
declared, and it’s used in the standard library wherever object sizes are
specified. In practice, size_t is either unsigned int or unsigned long.
Mem_alloc and Mem_calloc take integer arguments to avoid errors
when negative numbers are passed to unsigned arguments. For example,

int n = -1;
…
p = malloc(n);
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is clearly an error, but many implementations of malloc won’t catch the
error because when −1 is converted to a size_t, it usually winds up as a
very large unsigned value.

Memory is deallocated by Mem_free:

〈exported functions 70〉+≡
extern void Mem_free(void *ptr,

const char *file, int line);

〈exported macros 70〉+≡
#define FREE(ptr) ((void)(Mem_free((ptr), \

__FILE__, __LINE__), (ptr) = 0))

Mem_free takes a pointer to the block to be deallocated. If ptr is non-
null, Mem_free deallocates that block; if ptr is null, Mem_free has no
effect. The FREE macro also takes a pointer to a block, calls Mem_free to
deallocate the block, and sets ptr to the null pointer, which, as men-
tioned in Section 2.4, helps avoid dangling pointers. Since ptr is null
after its referent has been deallocated by FREE, a subsequent dereference
will usually cause the program to crash with some kind of addressing
error. This definite error is better than the unpredictable behavior that
dereferencing a dangling pointer can cause. Note that FREE evaluates ptr
more than once.

As detailed in the sections that follow, there are two implementations
that export the Mem interface. The checking implementation implements
checked runtime errors to help catch access errors like those described
in the previous section. In that implementation, it is a checked runtime
error to pass Mem_free a nonnull ptr that was not returned by a previ-
ous call to Mem_alloc, Mem_calloc, or Mem_resize, or a ptr that has
already been passed to Mem_free or Mem_resize. The values of
Mem_free’s file and line arguments are used to report these checked
runtime errors.

In the production implementation, however, these access errors are
unchecked runtime errors.

The function

〈exported functions 70〉+≡
extern void *Mem_resize(void *ptr, long nbytes,

const char *file, int line);
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〈exported macros 70〉+≡
#define RESIZE(ptr, nbytes) ((ptr) = Mem_resize((ptr), \

(nbytes), __FILE__, __LINE__))

changes the size of the block allocated by a previous call to Mem_alloc,
Mem_calloc, or Mem_resize. Like Mem_free, the first argument to
Mem_resize is the pointer that holds the address of the block whose
size is to be changed. Mem_resize expands or contracts the block so that
it holds at least nbytes of memory, suitably aligned, and returns a
pointer to the resized block. Mem_resize may move the block in order to
change its size, so Mem_resize is logically equivalent to allocating a new
block, copying some or all of the data from ptr to the new block, and
deallocating ptr. If Mem_resize cannot allocate the new block, it raises
Mem_Failed, with file and line as the exception coordinates. The
macro RESIZE changes ptr to point at the new block — a common use of
Mem_resize. Note that RESIZE evaluates ptr more than once.

If nbytes exceeds the size of the block pointed to by ptr, the excess
bytes are uninitialized. Otherwise, nbytes beginning at ptr are copied to
the new block.

It is a checked runtime error to pass Mem_resize a null ptr, and for
nbytes to be nonpositive. In the checking implementation, it is a
checked runtime error to pass Mem_resize a ptr that was not returned
by a previous call to Mem_alloc, Mem_calloc, or Mem_resize, and to
pass it one that has already been passed to Mem_free or  Mem_resize. In
the production implementation, these access errors are unchecked run-
time errors.

The functions in the Mem interface can be used in addition to the stan-
dard C library functions malloc, calloc, realloc, and free. That is, a
program can use both sets of allocation functions. The access errors
reported as checked runtime errors by the checking implementation
apply only to memory managed by that implementation. Only one imple-
mentation of the Mem interface may be used in any given program.

5.2 Production Implementation

In the production implementation, the routines encapsulate calls to the
memory-management functions in the standard library in the safer pack-
age specified by the Mem interface:
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〈mem.c〉≡
#include <stdlib.h>
#include <stddef.h>
#include "assert.h"
#include "except.h"
#include "mem.h"

〈data 74〉
〈functions 74〉

For example, Mem_alloc calls malloc and raises Mem_Failed when mal-
loc returns the null pointer:

〈functions 74〉≡
void *Mem_alloc(long nbytes, const char *file, int line){

void *ptr;

assert(nbytes > 0);
ptr = malloc(nbytes);
if (ptr == NULL)

〈raise Mem_Failed 74〉
return ptr;

}

〈raise Mem_Failed 74〉≡
{

if (file == NULL)
RAISE(Mem_Failed);

else
Except_raise(&Mem_Failed, file, line);

}

〈data 74〉≡
const Except_T Mem_Failed = { "Allocation Failed" };

If a client doesn’t handle Mem_Failed, Except_raise will give the
caller’s coordinates, which are passed to Mem_alloc when it reports the
unhandled exception. For example:

Uncaught exception Allocation Failed raised @parse.c:431
aborting...
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Similarly, Mem_calloc encapsulates a call to calloc:

〈functions 74〉+≡
void *Mem_calloc(long count, long nbytes,

const char *file, int line) {
void *ptr;

assert(count > 0);
assert(nbytes > 0);
ptr = calloc(count, nbytes);
if (ptr == NULL)

〈raise Mem_Failed 74〉
return ptr;

}

When either count or nbytes is zero, calloc’s behavior is implementa-
tion defined. The Mem interface specifies what happens in these cases,
which is one of its advantages and helps avoid bugs.

Mem_free just calls free:

〈functions 74〉+≡
void Mem_free(void *ptr, const char *file, int line) {

if (ptr)
free(ptr);

}

The standard permits null pointers to be passed to free, but Mem_free
doesn’t pass them, because old implementations of free may not accept
null pointers.

Mem_resize has a much simpler specification than does realloc,
which is reflected in its simpler implementation:

〈functions 74〉+≡
void *Mem_resize(void *ptr, long nbytes,

const char *file, int line) {

assert(ptr);
assert(nbytes > 0);
ptr = realloc(ptr, nbytes);
if (ptr == NULL)

〈raise Mem_Failed 74〉
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return ptr;
}

Mem_resize’s only purpose is to change the size of an existing block.
realloc does this, too, but it also frees a block when nbytes is zero and
allocates a block when ptr is the null pointer. These additional capabili-
ties, which are only loosely related to changing the size of an existing
block, invite bugs.

5.3 Checking Implementation

The functions exported by the checking implementation of the Mem inter-
face catch the kinds of access errors described at the beginning of this
chapter and report them as checked runtime errors.

〈memchk.c〉≡
#include <stdlib.h>
#include <string.h>
#include "assert.h"
#include "except.h"
#include "mem.h"

〈checking types 80〉
〈checking macros 79〉
〈data 74〉
〈checking data 77〉
〈checking functions 79〉

Mem_free and Mem_resize can detect access errors if Mem_alloc,
Mem_calloc, and Mem_resize never return the same address twice and
if they remember all of the addresses they do return and which ones
refer to allocated memory. Abstractly, these functions maintain a set S
whose elements are the pairs (α, free) or (α, allocated), where α is the
address returned by an allocation. The value free indicates that the
address α does not refer to allocated memory; that is, it has been deallo-
cated explicitly, and the value allocated indicates that α points to allo-
cated memory.

Mem_alloc and Mem_calloc add the pair (ptr, allocated) to S, where
ptr is their return value, and they guarantee that neither (ptr, allocated)
nor (ptr, free) was in S before the addition. Mem_free(ptr) is legal if ptr
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is null or if (ptr, allocated) is in S. If ptr is nonnull and (ptr, allocated) is
in S, Mem_free deallocates the block at ptr and changes the entry in S to
(ptr, free). Similarly, Mem_resize(ptr, nbytes, …) is legal only if (ptr,
allocated) is in S. If so, Mem_resize calls Mem_alloc to allocate a new
block, copies the contents of the old one to the new one, and calls
Mem_free to deallocate the old one; these calls make the appropriate
changes to S.

The condition that the allocation functions never return the same
address twice can be implemented by never deallocating anything. This
approach wastes space, and it’s easy to do better: never deallocate the
byte at an address previously returned by an allocation function. S can be
implemented by keeping a table of the addresses of these bytes.

This scheme can be implemented by writing a memory allocator that
sits on top of the standard library functions. This allocator maintains a
hash table of block descriptors:

〈checking data 77〉≡
static struct descriptor {

struct descriptor *free;
struct descriptor *link;
const void *ptr;
long size;
const char *file;
int line;

} *htab[2048];

ptr is the address of the block, which is allocated elsewhere as described
below, and size is the size of the block. file and line are the block’s
allocation coordinates — the source coordinates passed to the function
that allocated the block. These values aren’t used, but they’re stored in
descriptors so that debuggers can print them during a debugging
session.

The link fields form a list of descriptors for blocks that hash to the
same index in htab, which is an array of pointers to descriptors. These
descriptors also form a list of free blocks; the head of this list is the
dummy descriptor

〈checking data 77〉+≡
static struct descriptor freelist = { &freelist };
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and the list is threaded through the free fields of the descriptors. This
list is circular: freelist is the last descriptor on the list and its free
field points to the first descriptor. At any given time, htab holds descrip-
tors for all of the blocks, both free and allocated, and the free blocks are
on freelist. Thus, the descriptor’s free field is null if the block is allo-
cated and nonnull if it’s free, and htab implements S. Figure 5.1 shows
these data structures at one point in time. The space associated with
each descriptor structure appears behind it. Shaded spaces are allocated;
clear spaces are free, solid lines emanate from link fields, and the dot-
ted lines show the free list.

Figure 5.1 htab and freelist structures

freelist

htab

•
•
•

•
•
•
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Given an address, find searches for its descriptor. It returns either a
pointer to the descriptor or the null pointer:

〈checking functions 79〉≡
static struct descriptor *find(const void *ptr) {

struct descriptor *bp = htab[hash(ptr, htab)];

while (bp && bp->ptr != ptr)
bp = bp->link;

return bp;
}

〈checking macros 79〉≡
#define hash(p, t) (((unsigned long)(p)>>3) & \

(sizeof (t)/sizeof ((t)[0])-1))

The hash macro treats the address as a bit pattern, shifts it right three
bits, and reduces it modulo the size of htab. find is enough to write a
version of Mem_free in which access errors are checked runtime errors:

〈checking functions 79〉+≡
void Mem_free(void *ptr, const char *file, int line) {

if (ptr) {
struct descriptor *bp;
〈set bp if ptr is valid 79〉
bp->free = freelist.free;
freelist.free = bp;

}
}

If ptr is nonnull and is a valid address, the block is deallocated by
appending it to the free list for possible reuse by a subsequent call to
Mem_alloc. A pointer is valid if it points to an allocated block:

〈set bp if ptr is valid 79〉≡
if (((unsigned long)ptr)%(sizeof (union align)) != 0
|| (bp = find(ptr)) == NULL || bp->free)

Except_raise(&Assert_Failed, file, line);
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The test ((unsigned long)ptr)%(sizeof (union align)) != 0 avoids
calls to find for those addresses that aren’t multiples of the strictest
alignment and thus cannot possibly be valid block pointers.

As shown below, Mem_alloc always returns pointers that are aligned
on an address that is a multiple of the size of the following union.

〈checking types 80〉≡
union align {

int i;
long l;
long *lp;
void *p;
void (*fp)(void);
float f;
double d;
long double ld;

};

This alignment ensures that any type of data can be stored in the blocks
returned by Mem_alloc. If the ptr passed to Mem_free isn’t so aligned, it
can’t possibly be in htab and is thus invalid.

Mem_resize catches access errors by making the same check, and
then calls Mem_free, Mem_alloc, and the library function memcpy:

〈checking functions 79〉+≡
void *Mem_resize(void *ptr, long nbytes,

const char *file, int line) {
struct descriptor *bp;
void *newptr;

assert(ptr);
assert(nbytes > 0);
〈set bp if ptr is valid 79〉
newptr = Mem_alloc(nbytes, file, line);
memcpy(newptr, ptr,

nbytes < bp->size ? nbytes : bp->size);
Mem_free(ptr, file, line);
return newptr;

}
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Likewise, Mem_calloc can be implemented by calling Mem_alloc and
the library function memset:

〈checking functions 79〉+≡
void *Mem_calloc(long count, long nbytes,

const char *file, int line) {
void *ptr;

assert(count > 0);
assert(nbytes > 0);
ptr = Mem_alloc(count*nbytes, file, line);
memset(ptr, '\0', count*nbytes);
return ptr;

}

All that remains is to allocate the descriptors themselves and the code
for Mem_alloc. One way to do both tasks with one allocation is to allo-
cate a block large enough to hold a descriptor and the storage requested
by a call to Mem_alloc. This approach has two drawbacks. First, it com-
plicates carving up a block of free storage to satisfy several smaller
requests, because each request needs its own descriptor. Second, it
makes the descriptors vulnerable to corruption by writes through point-
ers or indices that stray just outside of allocated blocks.

Allocating descriptors separately decouples their allocations from
those done by Mem_alloc and reduces — but does not eliminate — the
chances that they will be corrupted. dalloc allocates, initializes, and
returns one descriptor, doling it out of the 512-descriptor chunks
obtained from malloc:

〈checking functions 79〉+≡
static struct descriptor *dalloc(void *ptr, long size,

const char *file, int line) {
static struct descriptor *avail;
static int nleft;

if (nleft <= 0) {
〈allocate descriptors 82〉
nleft = NDESCRIPTORS;

}
avail->ptr  = ptr;
avail->size = size;
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avail->file = file;
avail->line = line;
avail->free = avail->link = NULL;
nleft--;
return avail++;

}

〈checking macros 79〉+≡
#define NDESCRIPTORS 512

The call to malloc might return the null pointer, which dalloc passes
back to its caller.

〈allocate descriptors 82〉≡
avail = malloc(NDESCRIPTORS*sizeof (*avail));
if (avail == NULL)

return NULL;

As shown below, Mem_alloc raises Mem_Failed when dalloc returns
the null pointer.

Mem_alloc allocates a block of memory using the first-fit algorithm,
one of many memory-allocation algorithms. It searches freelist for the
first free block that is large enough to satisfy the request and divides
that block to fill the request. If freelist doesn’t contain a suitable
block, Mem_alloc calls malloc to allocate a chunk of memory that’s
larger than nbytes, adds this chunk onto the free list, and tries again.
Since the new chunk is larger than nbytes, it is used to fill the request
the second time around. Here’s the code:

〈checking functions 79〉+≡
void *Mem_alloc(long nbytes, const char *file, int line){

struct descriptor *bp;
void *ptr;

assert(nbytes > 0);
〈round nbytes up to an alignment boundary 83〉
for (bp = freelist.free; bp; bp = bp->free) {

if (bp->size > nbytes) {
〈use the end of the block at bp->ptr 83〉

}
if (bp == &freelist) {
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struct descriptor *newptr;
〈newptr ← a block of size NALLOC + nbytes 84〉
newptr->free = freelist.free;
freelist.free = newptr;

}
}
assert(0);
return NULL;

}

Mem_alloc starts by rounding nbytes up so that every pointer it returns
is a multiple of the size of the union align:

〈round nbytes up to an alignment boundary 83〉≡
nbytes = ((nbytes + sizeof (union align) - 1)/

(sizeof (union align)))*(sizeof (union align));

freelist.free points to the beginning of the free list, which is where
the for loop starts. The first free block whose size exceeds nbytes is
used to fill the request. The nbytes at the end of this free block are
carved off, and the address of that block is returned after its descriptor
is created, initialized, and added to htab:

〈use the end of the block at bp->ptr 83〉≡
bp->size -= nbytes;
ptr = (char *)bp->ptr + bp->size;
if ((bp = dalloc(ptr, nbytes, file, line)) != NULL) {

unsigned h = hash(ptr, htab);
bp->link = htab[h];
htab[h] = bp;
return ptr;

} else
〈raise Mem_Failed 74〉

Figure 5.2 shows the effect of this chunk: on the left is a descriptor that
points to some free space before it’s carved up. On the right, the allo-
cated space is shaded and a new descriptor points to it. Notice that the
new descriptor’s free list link is null.

The test bp->size > nbytes guarantees that the value of bp->ptr is
never reused. Large free blocks are divided to fill smaller requests until
they’re reduced to sizeof (union align) bytes, after which bp->size
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never exceeds nbytes. The first sizeof (union align) bytes of each
chunk are never allocated.

If bp reaches freelist, the list does not hold a block whose size
exceeds nbytes. In that case, a new chunk of size

〈checking macros 79〉+≡
#define NALLOC ((4096 + sizeof (union align) - 1)/ \

(sizeof (union align)))*(sizeof (union align))

plus nbytes is added to the beginning of the free list; it will be visited on
the next iteration of the for loop and will be used to fill the request. This
new chunk has a descriptor just as if it had been previously allocated
and freed:

〈newptr ← a block of size NALLOC + nbytes 84〉≡
if ((ptr = malloc(nbytes + NALLOC)) == NULL
||  (newptr = dalloc(ptr, nbytes + NALLOC,

__FILE__, __LINE__)) == NULL)
〈raise Mem_Failed 74〉

Figure 5.2 Allocating the tail of a free block

••• •••

•••
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Further Reading

One of the purposes of Mem is to improve the interface to the standard C
allocation functions. Maguire (1993) gives a critique of these functions
and describes a similar repackaging.

Memory-allocation bugs so pervade C programs that entire companies
are devoted to building and selling tools that help diagnose and fix such
bugs. One of the best is Purify (Hastings and Joyce 1992), which detects
almost all kinds of access errors, including those described in Section
5.3. Purify checks every load and store instruction; since it does so by
editing object code, it can be used even when source code is unavailable,
such as for proprietary libraries. Instrumenting source code to catch
access errors is at the other end of the implementation spectrum; for
example, Austin, Breach, and Sohi (1994) describe a system in which
“safe” pointers carry enough information to catch a wide range of access
errors. LCLint (Evans 1996) has many of the features of tools like PC-Lint
and can detect many potential memory-allocation errors at compile time.

Knuth (1973a) surveys all of the important memory-allocation algo-
rithms, and explains why first fit is usually better than, for example, best
fit, which looks for the free block whose size is closest to the request.
The first-fit algorithm used in Mem_alloc is similar to the one described
in Section 8.7 of Kernighan and Ritchie (1988).

There are endless variations on most memory-mangement algorithms,
usually designed to improve performance for specific applications or
allocation patterns. Quick fit (Weinstock and Wulf 1988) is one of the
most widely used. It capitalizes on the observation that many applica-
tions allocate blocks of only few different sizes. Quick fit keeps N free
lists, one for each of the N most frequently requested sizes. Allocating a
block of one of these sizes simply removes the first block from the
appropriate list, and freeing a block adds it to the appropriate list. When
the lists are empty or the request is for an odd size, an alternate algo-
rithm, such as first fit, is used.

Grunwald and Zorn (1993) describe a system that generates implemen-
tations of malloc and free tuned for a specific application. They first
run the application with versions of malloc and free that collect statis-
tics about block sizes, frequency of allocation versus deallocation, and
so forth. They then feed these data to a program that generates source
code for versions of malloc and free customized for the application.
These versions often use quick fit with a small, application-specific set of
block sizes.
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Exercises

5.1 Maguire (1993) advocates initializing uninitialized memory to
some distinctive bit pattern to help diagnose bugs that are caused
by accessing uninitialized memory. What are the properties of a
good bit pattern? Propose a suitable bit pattern and change the
checking implementation of Mem_alloc to use it. Try to find an
application where this change catches a bug.

5.2 Once a free block is whittled down to sizeof (union align)
bytes in the chunk 〈use the end of the block at bp->ptr 83〉, it can
never satisfy a request yet remains in the free list. Change this
code to remove such blocks. Can you find an application for which
measurements can detect the effect of this improvement?

5.3 Most implementations of first fit, such as the one in Section 8.7 of
Kernighan and Ritchie (1988), combine adjacent free blocks to
form larger free blocks. The checking implementation of
Mem_alloc doesn’t combine adjacent free blocks because it may
not return the same address twice. Devise an algorithm for
Mem_alloc that can combine adjacent free blocks without return-
ing the same address twice.

5.4 Some programmers might argue that raising Assert_Failure in
Mem_free is a draconian reaction to an access error because exe-
cution can continue if the erroneous call is simply logged and then
ignored. Implement

extern void Mem_log(FILE *log);

If Mem_log is passed a nonnull file pointer, it announces access
errors by writing messages to log instead of by raising
Assert_Failure. These messages can record the coordinates of
the erroneous call and of the allocation coordinates. For example,
when Mem_free is called with a pointer to a block that has already
been freed, it might write

** freeing free memory
Mem_free(0x6418) called from parse.c:461
This block is 48 bytes long and was allocated from sym.c:123
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Similarly, when Mem_resize is called with a bad pointer, it might
report

** resizing unallocated memory
Mem_resize(0xf7fff930,640) called from types.c:1101

Permit Mem_log(NULL) to turn off logging and reinstate assertion
failure for access errors.

5.5 The checking implementation has all of the information it needs
to report potential memory leaks. As described on page 68, a
memory leak is an allocated block that is not referenced by any
pointer and thus cannot be deallocated. Leaks cause programs to
run out of memory eventually. They aren’t a problem for pro-
grams that run for only a short time, but they’re a serious problem
for long-running programs, such as user interfaces and servers.
Implement

extern void Mem_leak(apply(void *ptr, long size,
const char *file, int line, void *cl), void *cl);

which calls the function pointed to by apply for every allocated
block; ptr is the location of the block, size is its allocated size,
and file and line are its allocation coordinates. Clients can pass
an application-specific pointer, cl, to Mem_leak, and this pointer
is passed along to apply as its last argument. Mem_leak doesn’t
know what cl is for, but presumably apply does. Together, apply
and cl are called a closure: They specify an operation and some
context-specific data for that operation. For example,

void inuse(void *ptr, long size,
const char  *file, int line, void *cl) {
FILE *log = cl;

fprintf(log, "** memory in use at %p\n", ptr);
fprintf(log, "This block is %ld bytes long "

"and was allocated from %s:%d\n", size,
file, line);

}

writes messages like
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** memory in use at 0x13428
This block is 32 bytes long and was allocated from gen.c:23

to the log file described in the previous exercise. inuse is called
by passing it and the file pointer for the log file to Mem_leak:

Mem_leak(inuse, log);



6
MORE MEMORY 
MANAGEMENT

ost implementations of malloc and free use memory-manage-
ment algorithms that are necessarily based on the sizes of
objects. The first-fit algorithm used in the previous chapter is

an example. In some applications, deallocations are grouped and occur
at the same time. Graphical user interfaces are an example. Space for
scroll bars, buttons, and so forth, is allocated when a window is created,
and deallocated when the window is destroyed. A compiler is another
example. lcc, for example, allocates memory as it compiles a function
and deallocates all of that memory at once when it finishes compiling the
function.

Memory-management algorithms based on the lifetimes of objects are
often better for these kinds of applications. Stack-based allocation is an
example of this class of allocation algorithms, but it can be used only if
object lifetimes are nested, which often is not the case.

This chapter describes a memory-management interface and an imple-
mentation that uses arena-based algorithms, which allocate memory
from an arena and deallocate entire arenas at once. Calling malloc
requires a subsequent call to free. As discussed in the previous chapter,
it’s easy to forget to call free or, worse, to deallocate an object that has
already been deallocated, or one that shouldn’t be deallocated.

With the arena-based allocator, there’s no obligation to call free for
every call to malloc; there’s only a single call that deallocates all the
memory allocated in an arena since the last deallocation. Both allocation
and deallocation are more efficient, and there are no storage leaks. But

M
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the most important benefit of this scheme is that it simplifies code.
Applicative algorithms allocate new data structures instead of changing
existing ones. The arena-based allocator encourages simple applicative
algorithms in place of algorithms that might be more space-efficient but
are always more complex because they must remember when to call
free.

There are two disadvantages of the arena-based scheme: It can use
more memory, and it can create dangling pointers. If an object is allo-
cated in the wrong arena and that arena is deallocated before the pro-
gram is done with the object, the program will reference either
unallocated memory or memory that has been reused for another, per-
haps unrelated, arena. It’s also possible to allocate objects in an arena
that isn’t deallocated as early as expected, which creates a storage leak.
In practice, however, arena management is so easy that these problems
rarely occur.

6.1 Interface

The Arena interface specifies two exceptions and functions that manage
arenas and allocate memory from them:

〈arena.h〉≡
#ifndef ARENA_INCLUDED
#define ARENA_INCLUDED
#include "except.h"

#define T Arena_T
typedef struct T *T;

extern const Except_T Arena_NewFailed;
extern const Except_T Arena_Failed;

〈exported functions 91〉

#undef T
#endif

Arenas are created and destroyed by
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〈exported functions 91〉≡
extern T    Arena_new    (void);
extern void Arena_dispose(T *ap);

Arena_new creates a new arena and returns an opaque pointer to the
newly created arena. These pointers are passed to the other functions to
specify an arena. If Arena_new cannot allocate the arena, it raises the
exception Arena_NewFailed. Arena_dispose frees the memory associ-
ated with the arena *ap, disposes of the arena itself, and clears *ap. It is
a checked runtime error to pass a null ap or *ap to Arena_dispose.

The allocation functions Arena_alloc and Arena_calloc are like the
functions with similar names in the Mem interface, except they allocate
memory from an arena.

〈exported functions 91〉+≡
extern void *Arena_alloc (T arena, long nbytes,

const char *file, int line);
extern void *Arena_calloc(T arena, long count,

long nbytes, const char *file, int line);
extern void  Arena_free  (T arena);

Arena_alloc allocates a block of at least nbytes in arena and returns a
pointer to the first byte. The block is aligned on an addressing boundary
that is suitable for the data with the strictest alignment requirement. The
contents of the block are uninitialized. Arena_calloc allocates a block
large enough to hold an array of count elements, each of size nbytes, in
arena, and returns a pointer to the first byte. The block is aligned as for
Arena_alloc, and is initialized to zeros. It is a checked runtime error for
count or nbytes to be nonpositive.

The last two arguments to Arena_alloc and Arena_calloc are the
file name and the line number of the location of the call. If Arena_alloc
and Arena_calloc cannot allocate the memory requested, they raise
Arena_Failed and pass file and line to Except_raise so that the
exception reports the location of the call. If file is the null pointer, they
supply the source locations within their implementations that raise
Arena_Failed.

Arena_free deallocates all the storage in arena, which amounts to
deallocating everything that has been allocated in arena since arena was
created or since the last call to Arena_free for that arena.
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It is a checked runtime error to pass a null T to any routine in this
interface. The routines in this interface can be used with those in the Mem
interface and with other allocators based on malloc and free.

6.2 Implementation

〈arena.c〉≡
#include <stdlib.h>
#include <string.h>
#include "assert.h"
#include "except.h"
#include "arena.h"
#define T Arena_T

const Except_T Arena_NewFailed =
{ "Arena Creation Failed" };

const Except_T Arena_Failed    =
{ "Arena Allocation Failed" };

〈macros 98〉
〈types 92〉
〈data 96〉
〈functions 93〉

An arena describes a chunk of memory:

〈types 92〉≡
struct T {

T prev;
char *avail;
char *limit;

};

The prev field points to the head of the chunk, which begins with an
arena structure as described below, and the limit field points just past
the end of the chunk. The avail field points to the chunk’s first free
location; the space beginning at avail and up to limit is available for
allocation.

To allocate N bytes when N does not exceed limit-avail, avail is
incremented by N and its previous value is returned. If N exceeds
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limit-avail, a new chunk is allocated by calling malloc; the current
value of *arena is “pushed” by storing it at the beginning of the new
chunk, the fields of arena are initialized so they describe the new chunk,
and allocation proceeds.

The arena structure thus heads a linked list of chunks in which the
links are the prev fields in copies of the arena structures that begin each
chunk. Figure 6.1 shows the state of an arena after three chunks have
been allocated. The shading denotes allocated space; chunks can vary in
size and may end with unallocated space if allocations don’t exactly fill
the chunks.

Arena_new allocates and returns an arena structure with its fields set
to null pointers, which denotes an empty arena:

〈functions 93〉≡
T Arena_new(void) {

T arena = malloc(sizeof (*arena));

Figure 6.1 An arena with three chunks

prev

limit

avail
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if (arena == NULL)
RAISE(Arena_NewFailed);

arena->prev = NULL;
arena->limit = arena->avail = NULL;
return arena;

}

Arena_dispose calls Arena_free to deallocate the chunks in the arena;
it then frees the arena structure itself and clears the pointer to the arena:

〈functions 93〉+≡
void Arena_dispose(T *ap) {

assert(ap && *ap);
Arena_free(*ap);
free(*ap);
*ap = NULL;

}

Arena uses malloc and free instead of, say, Mem_alloc and Mem_free,
so that it’s independent of other allocators.

Most allocations are trivial: They round the request amount up to the
proper alignment boundary, increment the avail pointer by the amount
of the rounded request, and return the previous value.

〈functions 93〉+≡
void *Arena_alloc(T arena, long nbytes,

const char *file, int line) {
assert(arena);
assert(nbytes > 0);
〈round nbytes up to an alignment boundary 95〉
while (nbytes > arena->limit - arena->avail) {

〈get a new chunk 95〉
}
arena->avail += nbytes;
return arena->avail - nbytes;

}

As in the checking implementation of the Mem interface, the size of the
union
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〈types 92〉+≡
union align {

int i;
long l;
long *lp;
void *p;
void (*fp)(void);
float f;
double d;
long double ld;

};

gives the minimum alignment on the host machine. Its fields are those
that are most likely to have the strictest alignment requirements, and it
is used to round up nbytes:

〈round nbytes up to an alignment boundary 95〉≡
nbytes = ((nbytes + sizeof (union align) - 1)/

(sizeof (union align)))*(sizeof (union align));

For most calls, nbytes is less than arena->limit - arena->avail;
that is, the chunk has at least nbytes of free space, so the body of the
while loop in Arena_alloc above is not executed. If the request cannot
be satisfied from the current chunk, a new chunk must be allocated. This
wastes the free space at the end of current chunk, which is illustrated in
the second chunk on the list shown in Figure 6.1.

After a new chunk is allocated, the current value of *arena is saved at
the beginning of the new chunk, and arena’s fields are initialized so that
allocation can continue:

〈get a new chunk 95〉≡
T ptr;
char *limit;
〈ptr ← a new chunk 96〉
*ptr = *arena;
arena->avail = (char *)((union header *)ptr + 1);
arena->limit = limit;
arena->prev  = ptr;

〈types 92〉+≡
union header {
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struct T b;
union align a;

};

The structure assignment *ptr = *arena pushes *arena by saving it at
the beginning of the new chunk. The union header ensures that
arena->avail is set to a properly aligned address for the first allocation
in this new chunk.

As shown below, Arena_free keeps a few free chunks on a free list
emanating from freechunks to reduce the number of times it must call
malloc. This list is threaded through the prev fields of the chunks’ ini-
tial arena structures, and the limit fields of those structures point just
past the ends of their chunks. nfree is the number of chunks on the list.
Arena_alloc gets a free chunk from this list or by calling malloc, and it
sets the local variable limit for use in 〈get a new chunk 95〉 above:

〈data 96〉+≡
static T freechunks;
static int nfree;

〈ptr ← a new chunk 96〉≡
if ((ptr = freechunks) != NULL) {

freechunks = freechunks->prev;
nfree--;
limit = ptr->limit;

} else {
long m = sizeof (union header) + nbytes + 10*1024;
ptr = malloc(m);
if (ptr == NULL)

〈raise Arena_Failed 96〉
limit = (char *)ptr + m;

}

If a new chunk must be allocated, one is requested that is large enough
to hold an arena structure plus nbytes, and have 10K bytes of available
space left over. If malloc returns null, allocation fails and Arena_alloc
raises Arena_Failed:

〈raise Arena_Failed 96〉≡
{

if (file == NULL)
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RAISE(Arena_Failed);
else

Except_raise(&Arena_Failed, file, line);
}

Once arena points to the new chunk, the while loop in Arena_alloc
tries the allocation again. It still might fail: If the new chunk came from
freechunks, it might be too small to fill the request, which is why
there’s a while loop instead of an if statement.

Arena_calloc simply calls Arena_alloc:

〈functions 93〉+≡
void *Arena_calloc(T arena, long count, long nbytes,

const char *file, int line) {
void *ptr;

assert(count > 0);
ptr = Arena_alloc(arena, count*nbytes, file, line);
memset(ptr, '\0', count*nbytes);
return ptr;

}

An arena is deallocated by adding its chunks to the list of free chunks,
which also restores *arena to its initial state as the list is traversed.

〈functions 93〉+≡
void Arena_free(T arena) {

assert(arena);
while (arena->prev) {

struct T tmp = *arena->prev;
〈free the chunk described by arena 98〉
*arena = tmp;

}
assert(arena->limit == NULL);
assert(arena->avail == NULL);

}

The structure assignment to tmp copies to tmp all of the fields of the
arena structure pointed to by arena->prev. This assignment and the
assignment *arena = tmp thus “pops” the stack of arena structures
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formed by the list of chunks. Once the entire list is traversed, all of the
fields of arena should be null.

freechunks accumulates free chunks from all arenas and thus could
get large. The length of the list isn’t a problem, but the free storage it
holds might be. Chunks on freechunks look like allocated memory to
other allocators and thus might make calls to malloc fail, for example.
To avoid tying up too much storage, Arena_free keeps no more than

〈macros 98〉≡
#define THRESHOLD 10

free chunks on freechunks. Once nfree reaches THRESHOLD, subse-
quent chunks are deallocated by calling free:

〈free the chunk described by arena 98〉≡
if (nfree < THRESHOLD) {

arena->prev->prev = freechunks;
freechunks = arena->prev;
nfree++;
freechunks->limit = arena->limit;

} else
free(arena->prev);

In Figure 6.2, the chunk on the left is to be deallocated. When nfree is
less than THRESHOLD, the chunk is added to freechunks. The deallo-
cated chunk is shown on the right, and the dotted lines depict the point-
ers planted by the three assignments in the code above.

Further Reading

Arena-based allocators are also known as pool allocators, and have been
described several times. Arena’s allocator (Hanson 1990) was originally
developed for use in lcc (Fraser and Hanson 1995). lcc’s allocator is
slightly simpler than Arena’s: Its arenas are allocated statically, and its
deallocator doesn’t call free. In its initial versions, allocation was done
by macros that manipulated arena structures directly and called a func-
tion only when a new chunk was needed.

Barrett and Zorn (1993) describe how to choose the appropriate arena
automatically. Their experiments suggest that the execution path to an
allocation site is a good predictor of the lifetime of the block allocated at
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that site. This information includes the call chain and the address of the
allocation site, and it is used to choose one of several application-
specific arenas.

Vmalloc (Vo 1996) is a more general allocator that can be used to
implement both the Mem and Arena interfaces. Vmalloc permits clients to
organize memory into regions and to provide functions that manage the
memory in each region. The Vmalloc library includes an implementation
of the malloc interface that provides memory checks similar to those
done by Mem’s checking implementation, and these checks can be con-
trolled by setting environment variables.

Arena-based allocation collapses many explicit deallocations into one.
Garbage collectors go one step further: They avoid all explicit dealloca-
tions. In languages with garbage collectors, programmers can almost
ignore storage allocation, and storage allocation bugs can’t occur. The
advantages of this property are hard to overstate.

With a garbage collector, space is reclaimed automatically as neces-
sary, usually when an allocation request can’t be filled. A garbage collec-

Figure 6.2 Deallocating a chunk when nfree < THRESHOLD
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tor finds all blocks that are referenced by program variables, and all
blocks that are referenced by fields in these blocks, and so on. These are
the accessible blocks; the rest are inaccessible and can be reused. There is
a large body of literature on garbage collection: Appel (1991) is a brief
survey that emphasizes recent algorithms, and Knuth (1973a) and Cohen
(1981) cover the older algorithms in more depth.

To find accessible blocks, most collectors must know which variables
point to blocks and which fields in blocks point to other blocks. Collec-
tors are usually used in languages that have enough compile-time or
runtime data to supply the necessary information. Examples include
LISP, Icon, SmallTalk, ML, and Modula-3. Conservative collectors (Boehm
and Weiser 1988) can deal with languages that don’t provide enough type
information, such as C and C++. They assume that any properly aligned
bit pattern that looks like a pointer is one and that the block it points to
is accessible. A conservative collector thus identifies some inaccessible
blocks as accessible and therefore busy, but has no choice but to overes-
timate the set of accessible blocks. Despite this apparent handicap, con-
servative collectors work surprising well in some programs (Zorn 1993).

Exercises

6.1 Arena_alloc looks only in the chunk described by arena. If
there’s not enough free space in that chunk, it allocates a new
chunk even if there is enough space in some other chunk further
down the list. Change Arena_alloc so that it allocates space in an
existing chunk if there’s one that has enough space, and measure
the resulting benefits. Can you find an application whose memory
use is reduced significantly by this change?

6.2 When Arena_alloc needs a new chunk, it takes the first one on
the free list, if there is one. A better choice would be to find the
largest free chunk that satisfies the request, allocating a new one
only if freechunks doesn’t hold a suitable chunk. Keeping track
of the largest chunk in freechunks would avoid fruitless travers-
als in this scheme. With this change, the while loop in
Arena_alloc could be replaced with an if statement. Implement
this scheme and measure its benefits. Does it make Arena_alloc
noticeably slower? Does it use memory more efficiently?
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6.3 Setting THRESHOLD to 10 means that free list will never hold more
than about 100K bytes of memory, since Arena_alloc allocates
chunks of at least 10K bytes. Devise a way for Arena_alloc and
Arena_free to monitor allocation and deallocation patterns and
to compute THRESHOLD dynamically based on these patterns. The
goal is to keep the free list as small as possible and to minimize
the number of calls to malloc.

6.4 Explain why the Arena interface doesn’t support the function

void *Arena_resize(void **ptr, long nbytes,
const char *file, int line)

which, like Mem_resize, would change the size of the block
pointed to by ptr to nbytes and return a pointer to the resized
block, which would reside in the same arena (but not necessarily
the same chunk) as the block given by ptr. How would you change
the implementation to support this function? What checked run-
time errors would you support?

6.5 In a stack allocator, an allocation pushes the new space onto the
top of a specified stack and returns the address of its first byte.
Marking a stack returns a value that encodes the current height of
that stack, and deallocation pops a stack back to a previously
marked height. Design and implement an interface for a stack
allocator. What checked runtime errors can you provide that will
catch deallocation errors? Examples of such errors are deallocat-
ing at a point higher than the current the top of a stack, or deallo-
cating at a point that has already been deallocated and
subsequently reallocated.

6.6 One problem with having more than one memory-allocation inter-
face is that other interfaces must choose between them without
knowing the best one for a particular application. Design and
implement a single interface that supports both kinds of alloca-
tors. This interface might, for example, provide an allocation func-
tion that is like Mem_alloc but that operates in an “allocation
environment,” which can be changed by other functions. This
environment would specify memory-management details, such as
which allocator and which arena to use, if it specified arena-based
allocation. Other functions might, for example, push the current



102 MORE MEMORY MANAGEMENT
environment on an internal stack and establish a new environ-
ment, and pop the stack to reestablish a previous environment.
Investigate these and other variations in your design.



7
LISTS

list is a sequence of zero or more pointers. A list with zero point-
ers is an empty list. The number of pointers in a list is its length.
Almost every nontrival application uses lists in some form. Lists

so pervade programs that some languages provide them as built-in
types; LISP, Scheme, and ML are the best known examples.

Lists are easy to implement, so programmers usually reimplement
them for each application at hand, and there’s no widely accepted stan-
dard interface for lists, although most application-specific interfaces
have many similarities. The List abstract data type described below pro-
vides many of the facilities found in most of these application-specific
interfaces. Sequences, described in Chapter 11, are another way to repre-
sent lists.

7.1 Interface

The complete List interface is

〈list.h〉≡
#ifndef LIST_INCLUDED
#define LIST_INCLUDED

#define T List_T
typedef struct T *T;

struct T {
T rest;

A
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void *first;
};

extern T      List_append (T list, T tail);
extern T      List_copy   (T list);
extern T      List_list   (void *x, ...);
extern T      List_pop    (T list, void **x);
extern T      List_push   (T list, void *x);
extern T      List_reverse(T list);
extern int    List_length (T list);
extern void   List_free   (T *list);
extern void   List_map    (T list,

void apply(void **x, void *cl), void *cl);
extern void **List_toArray(T list, void *end);

#undef T
#endif

A List_T is a pointer to a struct List_T. Most ADTs hide the represen-
tation details of their types. List reveals these details because for this
particular ADT, the complications induced by the alternatives outweigh
the benefits of doing so.

List_Ts have a trivial representation; it’s hard to imagine many other
representations whose implementations would offer advantages signifi-
cant enough to justify hiding the fact that list elements are structures
with two fields. The exercises explore some of the few alternatives.

Revealing List_T’s representation simplifies the interface and its use
in several ways. For example, variables of type struct List_T can be
defined and initialized statically, which is useful for building lists at
compile time, and avoids allocations. Likewise, other structures can have
struct List_Ts embedded in them. A null List_T is an empty list,
which is its natural representation, and functions aren’t needed to access
the first and rest fields.

All routines in this interface accept a null T for any list argument and
interpret it as the empty list.

List_list creates and returns a list. It’s called with N nonnull point-
ers followed by one null pointer, and it creates a list with N nodes whose
first fields hold the N nonnull pointers and whose Nth rest field is
null. For example, the assignments
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List_T p1, p2;
p1 = List_list(NULL);
p2 = List_list("Atom", "Mem", "Arena", "List", NULL);

return the empty list and a list with four nodes holding the pointers
to the strings Atom, Mem, Arena, and List. List_list can raise
Mem_Failed.

List_list assumes the pointers passed in the variable part of its
argument list are void. There’s no prototype to provide the necessary
implicit conversions, so programmers must provide casts when passing
other than char pointers and void pointers as the second and subsequent
arguments. For example, to build a list of four one-element lists that
hold the strings Atom, Mem, Arena, and List, the correct call is

p = List_list(List_list("Atom",  NULL),
  (void *)List_list("Mem",   NULL),
  (void *)List_list("Arena", NULL),
  (void *)List_list("List",  NULL), NULL);

It is an unchecked runtime error to omit the casts shown in this example.
Such casts are one of the pitfalls of variable length argument lists.

List_push(T list, void *x) adds a new node that holds x to the
beginning of list, and returns the new list. List_push can raise
Mem_Failed. List_push is another way to create a new list; for example,

p2 = List_push(NULL, "List");
p2 = List_push(p2,   "Arena");
p2 = List_push(p2,   "Mem");
p2 = List_push(p2,   "Atom");

creates the same list as the assignment to p2 above.
Given a nonempty list, List_pop(T list, void **x) assigns the

first field of the first node to *x, if x is nonnull, removes and deallo-
cates the first node, and returns the resulting list. Given an empty list,
List_pop simply returns it and does not change *x.

List_append(T list, T tail) appends one list to another: It assigns
tail to the last rest field in list. If list is null, it returns tail. Thus,

p2 = List_append(p2, List_list("Except", NULL));
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sets p2 to the five-element list formed by appending the one-element list
holding Except to the four-element list created above.

List_reverse reverses the order of the nodes in its list argument and
returns the resulting list. For example,

p2 = List_reverse(p2);

returns a list that holds Except, List, Arena, Mem, and Atom.
Most of the routines described so far are destructive, or nonapplica-

tive—they may change the lists passed to them and return the resulting
lists. List_copy is an applicative function: It makes and returns a copy
of its argument. Thus, after executing

List_T p3 = List_reverse(List_copy(p2));

p3 is the list Atom, Mem, Arena, and List, and Except; p2 remains
unchanged. List_copy can raise Mem_Failed.

List_length returns the number of nodes in its argument.
List_free takes a pointer to a T. If *list is nonnull, List_free de-

allocates all of the nodes on *list and sets it to the null pointer. If
*list is null, List_free has no effect. It is a checked runtime error to
pass a null pointer to List_free.

List_map calls the function pointed to by apply for every node in
list. Clients can pass an application-specific pointer, cl, to List_map,
and this pointer is passed along to *apply as its second argument. For
each node in list, *apply is called with a pointer to its first field and
with cl. Since *apply is called with pointers to the first fields, it can
change them. Taken together, apply and cl are called a closure or call-
back: They specify an operation and some context-specific data for that
operation. For example, given

void mkatom(void **x, void *cl) {
char **str = (char **)x;
FILE *fp = cl;

*str = Atom_string(*str);
fprintf(fp, "%s\n", *str);

}

the call List_map(p3, mkatom, stderr) replaces the strings in p3 with
equivalent atoms and prints
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Atom
Mem
Arena
List
Except

on the error output. Another example is

void applyFree(void **ptr, void *cl) {
FREE(*ptr);

}

which can be used to deallocate the space pointed to by the first fields
of a list before the list itself is deallocated. For example:

List_T names;
…
List_map(names, applyFree, NULL);
List_free(&names);

frees the data in the list names and then frees the nodes themselves. It is
an unchecked runtime error for apply to change list.

Given a list with N values, List_toArray(T list, void *end) creates
an array in which elements zero through N-1 hold the N values from the
first fields of the list and the Nth element holds the value of end,
which is often the null pointer. List_toArray returns a pointer to the
first element of this array. For example, the elements of p3 can be
printed in sorted order by

int i;
char **array = (char **)List_toArray(p3, NULL);
qsort((void **)array, List_length(p3), sizeof (*array),

(int (*)(const void *, const void *))compare);
for (i = 0; array[i]; i++)

printf("%s\n", array[i]);
FREE(array);

As suggested by this example, clients must deallocate the array returned
by List_toArray. If the list is empty, List_toArray returns a one-
element array. List_toArray can raise Mem_Failed. compare and its
use with the standard library function qsort are described on page 123.
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7.2 Implementation

〈list.c〉≡
#include <stdarg.h>
#include <stddef.h>
#include "assert.h"
#include "mem.h"
#include "list.h"

#define T List_T

〈functions 108〉

List_push is the simplest of the List functions. It allocates one node,
initializes it, and returns a pointer to it:

〈functions 108〉≡
T List_push(T list, void *x) {

T p;

NEW(p);
p->first = x;
p->rest  = list;
return p;

}

The other list-creation function, List_list, is more complicated
because it must cope with a variable number of arguments and must
append a new node to the evolving list for each nonnull pointer argu-
ment. To do so, it uses a pointer to the pointer to which the new node
should be assigned:

〈functions 108〉+≡
T List_list(void *x, ...) {

va_list ap;
T list, *p = &list;

va_start(ap, x);
for ( ; x; x = va_arg(ap, void *)) {

NEW(*p);
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(*p)->first = x;
p = &(*p)->rest;

}
*p = NULL;
va_end(ap);
return list;

}

p starts by pointing to list, so a pointer to the first node is assigned to
list. Thereafter, p points to the rest field of the last node on the list, so
an assignment to *p appends a node to the list. The following figure
shows the effect of the initialization of p and of the statements in the
body of the for loop as List_list builds a three-node list.

Each trip through the loop assigns the next pointer argument to x and
breaks when it hits the first null-pointer argument, which might be the
initial value of x. This idiom ensures that List_list(NULL) returns the
empty list — a null pointer.

List_list’s use of pointers to pointers — List_T *s — is typical of
many list-manipulation algorithms. It uses one succinct mechanism to
deal with two conditions: the initial node in a possibly empty list, and the
interior nodes of a nonempty list. List_append illustrates another use
of this idiom:

p

list

p

p

p
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〈functions 108〉+≡
T List_append(T list, T tail) {

T *p = &list;

while (*p)
p = &(*p)->rest;

*p = tail;
return list;

}

List_append walks p down list until it points to the null pointer at the
end of the list to which tail should be assigned. If list itself is the null
pointer, p ends up pointing to list, which has the desired effect of
appending tail to the empty list.

List_copy is the last of the List functions that uses the pointer-to-
pointer idiom:

〈functions 108〉+≡
T List_copy(T list) {

T head, *p = &head;

for ( ; list; list = list->rest) {
NEW(*p);
(*p)->first = list->first;
p = &(*p)->rest;

}
*p = NULL;
return head;

}

Pointers to pointers don’t simplify List_pop or List_reverse, so the
perhaps more obvious implementations suffice. List_pop removes the
first node in a nonempty list and returns the new list, or simply returns
an empty list:

〈functions 108〉+≡
T List_pop(T list, void **x) {

if (list) {
T head = list->rest;
if (x)

*x = list->first;
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FREE(list);
return head;

} else
return list;

}

If x is nonnull, *x is assigned the contents of the first field of the first
node before that node is discarded. Notice that List_pop must save
list->rest before deallocating the node pointed to by list.

List_reverse walks two pointers, list and next, down the list once
and uses them to reverse the list in place as it goes; new always points to
the first node of the reversed list:

〈functions 108〉+≡
T List_reverse(T list) {

T head = NULL, next;

for ( ; list; list = next) {
next = list->rest;
list->rest = head;
head = list;

}
return head;

}

The following figure depicts the situation at each loop iteration just after
the first statement in the loop body, the assignment to next, is executed
for the third element in the list.

list

head next
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next points to the successor of list or is null if list points to the last
node, and head points to the reversed list, which begins with the prede-
cessor of list or is null if list points to the first node. The second and
third statements in the loop body push the node pointed to by list onto
the front of head, and the increment expression list = next advances
list to its successor, at which point the list is:

next is advanced again the next time through the loop body.
List_length walks down list counting its nodes, and List_free

walks down list deallocating each node:

〈functions 108〉+≡
int List_length(T list) {

int n;

for (n = 0; list; list = list->rest)
n++;

return n;
}

void List_free(T *list) {
T next;

assert(list);
for ( ; *list; *list = next) {

next = (*list)->rest;
FREE(*list);

head next

list
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}
}

List_map sounds complicated, but it’s trivial, because the closure
function does all the work. List_map simply walks down list calling
the closure function with a pointer to each node’s first field and with
the client-specific pointer cl:

〈functions 108〉+≡
void List_map(T list,

void apply(void **x, void *cl), void *cl) {
assert(apply);
for ( ; list; list = list->rest)

apply(&list->first, cl);
}

List_toArray allocates an N+1-element array to hold the pointers in
an N-element list, and copies the pointers into the array:

〈functions 108〉+≡
void **List_toArray(T list, void *end) {

int i, n = List_length(list);
void **array = ALLOC((n + 1)*sizeof (*array));

for (i = 0; i < n; i++) {
array[i] = list->first;
list = list->rest;

}
array[i] = end;
return array;

}

Allocating a one-element array for an empty list may seem a waste, but
doing so means that List_toArray always returns a nonnull pointer to
an array, so clients never need to check for null pointers.

Further Reading

Knuth (1973a) describes all of the important algorithms for manipulat-
ing singly linked lists, like those provided by List, and for manipulating
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doubly linked lists, which are provided by Ring (described in Chapter
12).

Lists are used for everything in list-manipulation languages like LISP
and Scheme, and in functional languages like ML (Ullman 1994). Abelson
and Sussman (1985) is one of the many textbooks that show how lists
can be used to conquer almost any problem; it uses Scheme.

Exercises

7.1 Design a list ADT that hides the representation of lists and does
not use null pointers for empty lists. Design the interface first,
then do an implementation. One approach is to make List_T an
opaque pointer that points to a list head, which holds a pointer to
the list itself or to both the first and last node of the list. The list
head could also hold the length of the list.

7.2 Rewrite List_list, List_append, and List_copy without using
pointers to pointers.

7.3 Rewrite List_reverse using pointers to pointers.

7.4 List_append, which is one of the most frequently used list opera-
tions in many applications, must walk down to the end of the list,
so it takes O(N) time for N-element lists. Circularly linked lists are
another representation for singly linked lists. The free list in the
checking implementation of the Mem interface is an example of a
circularly linked list. The rest field of the last node in a circularly
linked list points to the first node, and the list itself is represented
by a pointer to the last node. Thus, both the first and last node
can be reached in constant time, and appending to a circularly
linked list can be done in constant time. Design an interface for a
list ADT that uses circularly linked lists. Experiment with inter-
faces that both hide and reveal this representation.
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n associative table is a set of key-value pairs. It’s like an array
except that the indices can be values of any type. Many applica-
tions use tables. Compilers, for example, maintain symbol tables,

which map names to sets of attributes for those names. Some window
systems maintain tables that map window titles into some kind of
window-related data structures. Document-preparation systems use
tables to represent indices: For example, the index might be a table in
which the keys are one-character strings — one for each section of the
index — and the values are other tables in which the keys are the strings
for the index entries themselves and the values are lists of page
numbers.

Tables have many uses, and the examples alone could fill a chapter.
The Table interface is designed so that it can be used for many of these
uses. It maintains key-value pairs, but it never inspects keys themselves;
only clients inspect keys via functions passed to routines in Table. Sec-
tion 8.2 describes a typical Table client, a program that prints the num-
ber of occurrences of words in its input. This program, wf, also uses the
Atom and Mem interfaces.

8.1 Interface

Table represents an associative table with an opaque pointer type:

〈table.h〉≡
#ifndef TABLE_INCLUDED
#define TABLE_INCLUDED

A
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#define T Table_T
typedef struct T *T;

〈exported functions 116〉

#undef T
#endif

The exported functions allocate and deallocate Table_Ts, add and
remove key-value pairs from those tables, and visit the key-value pairs in
them. It is a checked runtime error to pass a null Table_T or null key to
any function in this interface.

Table_Ts are allocated and deallocated by

〈exported functions 116〉≡
extern T    Table_new (int hint,

int cmp(const void *x, const void *y),
unsigned hash(const void *key));

extern void Table_free(T *table);

Table_new’s first argument, hint, is an estimate of the number of
entries that the new table is expected to hold. All tables can hold an arbi-
trary number of entries regardless of the value of hint, but accurate val-
ues of hint may improve performance. It is a checked runtime error for
hint to be negative. The  functions cmp and hash manipulate client-
specific keys. Given two keys, x and y, cmp(x,y) must return an integer
less than zero, equal to zero, or greater than zero, if, respectively, x is
less than y, x equals y, or x is greater than y. The standard library func-
tion strcmp is an example of a comparison function suitable for keys
that are strings. hash must return a hash number for key; if cmp(x,y)
returns zero, then hash(x) must be equal to hash(y). Each table can
have its own hash and cmp functions.

Atoms are often used as keys, so if hash is the null function pointer,
the keys in the new table are assumed to be atoms and the implementa-
tion of Table provides a suitable hash function. Similarly, if cmp is the
null function pointer, keys are assumed to be atoms, and two keys x and
y are equal if x = y.

Table_new can raise Mem_Failed.
Table_new’s arguments — a size hint, a hash function, and a compari-

son function — provide more information than most implementations
need. For example, the hash table implementation described in Section
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8.3 needs a comparison function that tests only for equality, and imple-
mentations that use trees don’t need the hint or the hash function. This
complexity is the price of a design that permits multiple implementa-
tions, and this feature is one of the reasons designing good interfaces is
difficult.

Table_free deallocates *table and sets it to the null pointer. It is a
checked runtime error for table or *table to be null. Table_free does
not deallocate the keys or values; see Table_map.

The functions

〈exported functions 116〉+≡
extern int   Table_length(T table);
extern void *Table_put   (T table, const void *key,

void *value);
extern void *Table_get   (T table, const void *key);
extern void *Table_remove(T table, const void *key);

return the number of keys in a table, add a new key-value pair or change
the value of an existing pair, fetch the value associated with a key, and
remove a key-value pair.

Table_length returns the number of key-value pairs in table.
Table_put adds the key-value pair given by key and value to table.

If table already holds key, value overwrites the previous value, and
Table_put returns the previous value. Otherwise, key and value are
added to table, which grows by one entry, and Table_put returns the
null pointer. Table_put can raise Mem_Failed.

Table_get searches table for key and, if it’s found, returns its asso-
ciated value. If table doesn’t hold key, Table_get returns the null
pointer. Notice that returning the null pointer is ambiguous if table
holds null pointer values.

Table_remove searches table for key and, if it’s found, removes the
key-value pair from table, which thus shrinks by one entry, and returns
the removed value. If table doesn’t hold key, Table_remove has no
effect on table and returns the null pointer.

The functions

〈exported functions 116〉+≡
extern void   Table_map    (T table,

void apply(const void *key, void **value, void *cl),
void *cl);

extern void **Table_toArray(T table, void *end);
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visit the key-value pairs and collect them into an array. Table_map calls
the function pointed to by apply for every key-value pair in table in an
unspecified order. apply and cl specify a closure: Clients can pass an
application-specific pointer, cl, to Table_map and this pointer is passed
along to apply at each call. For each pair in table, apply is called with
its key, a pointer to its value, and cl. Since apply is called with pointers
to the values, it can change them. Table_map can also be used to deallo-
cate keys or values before deallocating the table. For example, assuming
the keys are atoms,

static void vfree(const void *key, void **value,
void *cl) {
FREE(*value);

}

deallocates just the values, so

Table_map(table, vfree, NULL);
Table_free(&table);

deallocates the values in table and then table itself.
It is a checked runtime error for apply to change the contents of

table by calling Table_put or Table_remove.
Given a table with N key-value pairs, Table_toArray builds an array

with 2N+1 elements and returns a pointer to the first element. The keys
and values alternate, with keys appearing in the even-numbered ele-
ments and their associated values in the following odd-numbered ele-
ments. The last even-numbered element, at index 2N, is assigned end,
which is often the null pointer. The order of the key-value pairs in the
array is unspecified. The program described in Section 8.2 illustrates the
use of Table_toArray.

Table_toArray can raise Mem_Failed, and clients must deallocate
the array it returns.

8.2 Example: Word Frequencies

wf lists the number of times each word appears in a list of named files or
in the standard input if no files are specified. For example:
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% wf table.c mem.c
table.c:
3 apply
7 array
13 assert
9 binding 
18 book
2 break
10 buckets
...
4 y
mem.c:
1 allocation
7 assert
12 book
1 stdlib
9 void
...

As this output shows, the words in each file are listed in alphabetical
order and are preceded by the number of times they appear in the file.
For wf, a word is a letter followed by zero more letters or underscores,
and case doesn’t matter.

More generally, a word begins with a character in a first set followed
by zero or more characters in a rest set. Words of this form are recog-
nized by getword, which is a generalization of double’s getword
described in Section 1.1. It’s used enough in this book to be packaged
separately in its own interface:

〈getword.h〉≡
#include <stdio.h>

extern int getword(FILE *fp, char *buf, int size,
int first(int c), int rest(int c));

getword consumes the next word in the file opened on fp, stores it as a
null-terminated string in buf[0..size-1], and returns one. When it
reaches the end of file without consuming a word, it returns zero. The
functions first and rest test a character for membership in first and
rest. A word is a contiguous sequence of characters; it starts with a char-
acter for which first returns a nonzero value followed by characters for
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which rest returns nonzero values. If a word is longer than size-2
characters, the excess characters are discarded. size must exceed one,
and fp, buf, first, and rest must be nonnull.

〈getword.c〉≡
#include <ctype.h>
#include <string.h>
#include <stdio.h>
#include "assert.h"
#include "getword.h"

int getword(FILE *fp, char *buf, int size,
int first(int c), int rest(int c)) {
int i = 0, c;

assert(fp && buf && size > 1 && first && rest);
c = getc(fp);
for ( ; c != EOF; c = getc(fp))

if (first(c)) {
〈store c in buf if it fits 120〉
c = getc(fp);
break;

}
for ( ; c != EOF && rest(c); c = getc(fp))

〈store c in buf if it fits 120〉
if (i < size)

buf[i] = '\0';
else

buf[size-1] = '\0';
if (c != EOF)

ungetc(c, fp);
return i > 0;

}

〈store c in buf if it fits 120〉≡
{

if (i < size - 1)
buf[i++] = c;

}
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This version of getword is a bit more complex than the version in dou-
ble because this one must work when a character is in first but not in
rest. When first returns nonzero, that character is stored in buf and
only subsequent characters are passed to rest.

wf’s main function processes its arguments, which name files. main
opens each file and calls wf with the file pointer and file name:

〈wf functions 121〉≡
int main(int argc, char *argv[]) {

int i;

for (i = 1; i < argc; i++) {
FILE *fp = fopen(argv[i], "r");
if (fp == NULL) {

fprintf(stderr, "%s: can't open '%s' (%s)\n",
argv[0], argv[i], strerror(errno));

return EXIT_FAILURE;
} else {

wf(argv[i], fp);
fclose(fp);

}
}
if (argc == 1) wf(NULL, stdin);
return EXIT_SUCCESS;

}

〈wf includes 121〉≡
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

If there are no arguments, main calls wf with a null file name and the file
pointer for the standard input. The null file name tells wf not to print the
name of the file.

wf uses a table to store the words and their counts. Each word is
folded to lowercase, converted to an atom, and used as a key. Using
atoms lets wf use the defaults for the table’s hash and comparison func-
tions. Values are pointers, but wf needs to associate an integer count
with each key. It thus allocates space for a counter and stores a pointer
to this space in the table.
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〈wf functions 121〉+≡
void wf(char *name, FILE *fp) {

Table_T table = Table_new(0, NULL, NULL);
char buf[128];

while (getword(fp, buf, sizeof buf, first, rest)) {
const char *word;
int i, *count;
for (i = 0; buf[i] != '\0'; i++)

buf[i] = tolower(buf[i]);
word = Atom_string(buf);
count = Table_get(table, word);
if (count)

(*count)++;
else {

NEW(count);
*count = 1;
Table_put(table, word, count);

}
}
if (name)

printf("%s:\n", name);
{ 〈print the words 123〉 }
〈deallocate the entries and table 124〉

}

〈wf includes 121〉+≡
#include <ctype.h>
#include "atom.h"
#include "table.h"
#include "mem.h"
#include "getword.h"

〈wf prototypes 122〉≡
void wf(char *, FILE *);

count is a pointer to an integer. If Table_get returns null, the word isn’t
in table, so wf allocates space for the counter, initializes it to one to
account for this first occurrence of the word, and adds it to the table.
When Table_get returns a nonnull pointer, the expression (*count)++
increments the integer pointed to by that pointer. This expression is
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much different than *count++, which would increment count instead of
the integer it points to.

Membership in first and rest is tested by functions of the same names
that use the predicates defined in the standard header ctype.h:

〈wf functions 121〉+≡
int first(int c) {

return isalpha(c);
}

int rest(int c) {
return isalpha(c) || c == '_';

}

〈wf prototypes 122〉+≡
int first(int c);
int rest (int c);

Once wf has read all of the words, it must sort and print them. qsort,
the standard C library sorting function, sorts an array, so wf can sort the
array returned by Table_toArray if it tells qsort that key-value pairs in
the array should be treated as single elements. It can then print the
words and their counts by walking down the array:

〈print the words 123〉≡
int i;
void **array = Table_toArray(table, NULL);
qsort(array, Table_length(table), 2*sizeof (*array),

compare);
for (i = 0; array[i]; i += 2)

printf("%d\t%s\n", *(int *)array[i+1],
(char *)array[i]);

FREE(array);

qsort takes four arguments: the array, the number of elements, the
size of each element in bytes, and a function that’s called to compare
two elements. To treat each of the N key-value pairs as a single element,
wf tells qsort that there are N elements and that each takes the space
occupied by two pointers.

qsort calls the comparison function with pointers to the elements.
Each element is itself two pointers — one to the word and one to the
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count — so the comparision function is called with two pointers to point-
ers to characters. For instance, when assert from mem.c is compared
with book, the arguments x and y are

The comparison function can compare the words by calling strcmp:

〈wf functions 121〉+≡
int compare(const void *x, const void *y) {

return strcmp(*(char **)x, *(char **)y);
}

〈wf includes 121〉+≡
#include <string.h>

〈wf prototypes 122〉+≡
int compare(const void *x, const void *y);

The wf function is called for each file-name argument, so, to save
space, it should deallocate the table and the counts before it returns. A
call to Table_map deallocates the counts, and Table_free deallocates
the table itself.

〈deallocate the entries and table 124〉≡
Table_map(table, vfree, NULL);
Table_free(&table);

〈wf functions 121〉+≡
void vfree(const void *key, void **count, void *cl) {

y

book

12

assert

x

7
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FREE(*count);
}

〈wf prototypes 122〉+≡
void vfree(const void *, void **, void *);

The keys aren’t deallocated because they’re atoms, and so must not be.
Besides, some of them are likely to appear in subsequent files.

Collecting the various wf.c fragments forms the program wf:

〈wf.c〉≡
〈wf includes 121〉
〈wf prototypes 122〉
〈wf functions 121〉

8.3 Implementation

〈table.c〉≡
#include <limits.h>
#include <stddef.h>
#include "mem.h"
#include "assert.h"
#include "table.h"

#define T Table_T

〈types 125〉
〈static functions 127〉
〈functions 126〉

Hash tables are one of the obvious data structures for representing
associative tables (trees are the other one; see Exercise 8.2). Each
Table_T is thus a pointer to a structure that holds a hash table of bind-
ings, which carry the key-value pairs:

〈types 125〉≡
struct T {

〈fields 126〉
struct binding {

struct binding *link;
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const void *key;
void *value;

} **buckets;
};

buckets points to an array with the appropriate number of elements.
The cmp and hash functions are associated with a particular table, so
they are also stored in the structure along with the number of elements
in buckets:

〈fields 126〉≡
int size;
int (*cmp)(const void *x, const void *y);
unsigned (*hash)(const void *key);

Table_new uses its hint argument to choose a prime for the size of
buckets, and it saves either cmp and hash or pointers to static functions
for comparing and hashing atoms:

〈functions 126〉≡
T Table_new(int hint,

int cmp(const void *x, const void *y),
unsigned hash(const void *key)) {
T table;
int i;
static int primes[] = { 509, 509, 1021, 2053, 4093,

8191, 16381, 32771, 65521, INT_MAX };

assert(hint >= 0);
for (i = 1; primes[i] < hint; i++)

;
table = ALLOC(sizeof (*table) +

primes[i-1]*sizeof (table->buckets[0]));
table->size = primes[i-1];
table->cmp  = cmp  ?  cmp : cmpatom;
table->hash = hash ? hash : hashatom;
table->buckets = (struct binding **)(table + 1);
for (i = 0; i < table->size; i++)

table->buckets[i] = NULL;
table->length = 0;
table->timestamp = 0;
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return table;
}

The for loop sets i to the index of the first element in primes that is
equal to or exceeds hint, and primes[i-1] gives the number of ele-
ments in buckets. Notice that the loop starts at index 1. Mem’s ALLOC
allocates the structure and space for buckets. Table uses a prime for
the size of its hash table because it has no control over how hash num-
bers for keys are computed. The values in primes are the primes nearest

 for n from 9 to 16, which yield a wide range of hash-table sizes. Atom
uses a simpler algorithm because it also computes the hash numbers.

If cmp or hash is the null function pointer, the functions

〈static functions 127〉≡
static int cmpatom(const void *x, const void *y) {

return x != y;
}

static unsigned hashatom(const void *key) {
return (unsigned long)key>>2;

}

are used instead. Since atoms x and y are equal if x = y, cmpatom returns
zero when x = y and one otherwise. This particular implementation of
Table tests keys for equality only, so cmpatom doesn’t need to test the
relative order of x and y. An atom is an address and this address itself
can be used as a hash number; it is shifted right two bits because it’s
likely that each atom starts on a word boundary, so the rightmost two
bits are probably zero.

Each element in buckets heads a linked list of binding structures
that hold a key, its associated value, and a pointer to the next binding
structure on the list. Figure 8.1 gives an example. All of the keys in each
list have the same hash number.

Table_get finds a binding by hashing its key, taking it modulo the
number of elements in buckets, and searching the list for a key equal to
key. It calls the table’s hash and cmp functions.

〈functions 126〉+≡
void *Table_get(T table, const void *key) {

int i;
struct binding *p;

2
n
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assert(table);
assert(key);
〈search table for key 128〉
return p ? p->value : NULL;

}

〈search table for key 128〉≡
i = (*table->hash)(key)%table->size;
for (p = table->buckets[i]; p; p = p->link)

if ((*table->cmp)(key, p->key) == 0)
break;

This for loop terminates when it finds the key, and it thus leaves p point-
ing to the binding of interest. Otherwise, p ends up null.

Figure 8.1 Table layout

link

valuekey

•
•
•

•
•
•
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Table_put is similar; it searches for a key and, if it finds it, changes
the associated value. If Table_put doesn’t find the key, it allocates and
initializes a new binding, and adds that binding to the front of the
appropriate list hanging off of buckets. It could link the new binding in
anywhere on the list, but adding to the front of the list is the easiest and
most efficient alternative.

〈functions〉+≡
void *Table_put(T table, const void *key, void *value) {

int i;
struct binding *p;
void *prev;

assert(table);
assert(key);
〈search table for key 128〉
if (p == NULL) {

NEW(p);
p->key = key;
p->link = table->buckets[i];
table->buckets[i] = p;
table->length++;
prev = NULL;

} else
prev = p->value;

p->value = value;
table->timestamp++;
return prev;

}

Table_put increments two per-table counters:

〈fields 126〉+≡
int length;
unsigned timestamp;

length is the number of bindings in the table; it’s returned by
Table_length:

〈functions 126〉+≡
int Table_length(T table) {
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assert(table);
return table->length;

}

A table’s timestamp is incremented every time the table is changed by
Table_put or Table_remove. timestamp is used to implement the
checked runtime error that Table_map must enforce: the table can’t be
changed while Table_map is visiting its bindings. Table_map saves the
value of timestamp upon entry. After each call to apply, it asserts that
the table’s timestamp is still equal to this saved value.

〈functions 126〉+≡
void Table_map(T table,

void apply(const void *key, void **value, void *cl),
void *cl) {
int i;
unsigned stamp;
struct binding *p;

assert(table);
assert(apply);
stamp = table->timestamp;
for (i = 0; i < table->size; i++)

for (p = table->buckets[i]; p; p = p->link) {
apply(p->key, &p->value, cl);
assert(table->timestamp == stamp);

}
}

Table_remove also searches for a key, but does so by using a pointer
to a pointer to a binding so that it can remove the binding for the key if
it finds it:

〈functions 126〉+≡
void *Table_remove(T table, const void *key) {

int i;
struct binding **pp;

assert(table);
assert(key);
table->timestamp++;
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i = (*table->hash)(key)%table->size;
for (pp = &table->buckets[i]; *pp; pp = &(*pp)->link)

if ((*table->cmp)(key, (*pp)->key) == 0) {
struct binding *p = *pp;
void *value = p->value;
*pp = p->link;
FREE(p);
table->length--;
return value;

}
return NULL;

}

The for loop is functionally equivalent to the one in 〈search table for
key 128〉, except that pp points to the pointer to the binding for each key.
pp starts by pointing to table->buckets[i] and follows along the list,
pointing to the link field of the kth binding in the list when the k+1st
binding is examined, as depicted below.

If *pp holds key, the binding can be unlinked from the list by setting
*pp to (*pp)->link; p holds the value of *pp. If Table_remove finds
the key, it also decrements the table’s length.

Table_toArray is similar to List_toArray. It allocates an array to
hold the key-value pairs followed by a terminating end pointer, and fills
in the array by visiting each binding in table:

〈functions 126〉+≡
void **Table_toArray(T table, void *end) {

int i, j = 0;
void **array;
struct binding *p;

pp p
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assert(table);
array = ALLOC((2*table->length + 1)*sizeof (*array));
for (i = 0; i < table->size; i++)

for (p = table->buckets[i]; p; p = p->link) {
array[j++] = (void *)p->key;
array[j++] = p->value;

}
array[j] = end;
return array;

}

p->key must be cast from const void * to void * because the array is not
declared const. The order of the key-value pairs in the array is arbitrary.

Table_free must deallocate the binding structures and the Table_T
structure itself. The former step is needed only if the table isn’t empty:

〈functions 126〉+≡
void Table_free(T *table) {

assert(table && *table);
if ((*table)->length > 0) {

int i;
struct binding *p, *q;
for (i = 0; i < (*table)->size; i++)

for (p = (*table)->buckets[i]; p; p = q) {
q = p->link;
FREE(p);

}
}
FREE(*table);

}

Further Reading

Tables are so useful that many programming languages use them as
built-in data types. AWK (Aho, Kernighan, and Weinberger 1988) is a
recent example, but tables appeared in SNOBOL4 (Griswold 1972), which
predates AWK, and in SNOBOL4’s successor, Icon (Griswold and Griswold
1990). Tables in SNOBOL4 and Icon can be indexed by and can hold val-
ues of any type, but AWK tables (which are called arrays) can be indexed
by and hold only strings and numbers. Table’s implementation uses
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some of the same techniques used to implement tables in Icon (Griswold
and Griswold 1986).

PostScript (Adobe Systems 1990), a page-description language, also
has tables, which it calls dictionaries. PostScript tables can be indexed
only by “names,” which are PostScript’s rendition of atoms, but can hold
values of any type, including dictionaries.

Tables also appear in object-oriented languages, either as built-in
types or in libraries. The foundation libraries in both SmallTalk and
Objective-C include dictionaries, which are much like the tables exported
by Table. These kinds of objects are often called container objects
because they hold collections of other objects.

Table’s implementation uses fixed-size hash tables. As long as the
load factor, which is the number of table entries divided by the number
of elements in the hash table, is reasonably small, keys can be found by
looking at only a few entries. Performance suffers, however, when the
load factor gets too high. The load factor can be kept within reasonable
bounds by expanding the hash table whenever the load factor exceeds,
say, five. Exercise 8.5 explores an effective but naive implementation of
dynamic hash tables, which expands the hash table and rehashes all the
existing entries. Larson (1988) describes, in great detail, a more sophisti-
cated approach in which the hash table is expanded (or contracted) incre-
mentally, one hash chain at a time. Larson’s approach eliminates the
need for hint, and it can save storage because all tables can start small.

Exercises

8.1 There are many viable alternatives for associative-table ADTs. For
example, in earlier versions of Table, Table_get returned point-
ers to the values instead of returning the values themselves, so cli-
ents could change them. In one design, Table_put always added a
new binding to the table even if the key was already present, effec-
tively “hiding” a previous binding with the same key, and
Table_remove removed only the most recent binding. Table_map,
however, visited all bindings in the table. Discuss the pros and
cons of these and other alternatives. Design and implement a dif-
ferent table ADT.

8.2 The Table interface is designed so that other data structures can
be used to implement tables. The comparison function reveals the
relative order of two keys to admit implementations that use
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trees, for example. Reimplement Table using binary search trees
or red-black trees. See Sedgewick (1990) for details about these
data structures.

8.3 The order in which Table_map and Table_toArray visit the bind-
ings in a table is unspecified. Suppose the interface were amended
so that Table_map visited the bindings in the order they were
added to the table and Table_array returned an array with the
bindings in the same order. Implement this amendment. What are
the practical advantages of this behavior?

8.4 Suppose the interface stipulated that Table_map and
Table_array visited the bindings in sorted order. This stipulation
would complicate the implementation of Table, but would sim-
plify clients like wf that sort the table’s bindings anyway. Discuss
the merits of this proposal and implement it. Hint: In the current
implementation, the average-case running time of Table_put is
constant and that of Table_get is nearly so. What are the average-
case running times of Table_put and Table_get in your revised
implementation?

8.5 Once buckets is allocated, it’s never expanded or contracted.
Revise the Table implementation so that it uses a heuristic to
adjust the size of buckets periodically as pairs are added and
removed. Devise a test program that tests the effectiveness of
your heuristics, and measure its benefit.

8.6 Implement the linear dynamic-hashing algorithm described in Lar-
son (1988), and compare its performance with your solution to the
previous exercise.

8.7 Revise wf.c to measure how much space is lost because atoms are
never deallocated.

8.8 Change wf.c’s compare function so that it sorts the array in
decreasing order of count values.

8.9 Change wf.c so that it prints the output for each file argument in
alphabetical order of file names. With this change, the counts for
mem.c would appear before those for table.c in the example
shown at the beginning of Section 8.2.
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9
SETS

set is an unordered collection of distinct members. The basic
operations on a set are testing for membership, adding members,
and removing members. Other operations include set union,

intersection, difference, and symmetric difference. Given two sets s and
t, the union s + t is a set that contains everything in s and everything in
t; the intersection s ∗  t is the set whose members appear in both s and
t, the difference s − t is the set whose members appear in s but not in t,
and the symmetric difference, often written as s / t, is the set whose
members appear in only one of s or t.

Sets are usually described in terms of a universe — the set of all possi-
ble members. For example, sets of characters are usually associated with
the universe consisting of the 256 eight-bit character codes. When a uni-
verse U is specified, it’s possible to form the complement of a set s,
which is U − s.

The sets provided by the Set interface do not rely on universes. The
interface exports functions that manipulate set members, but never
inspect them directly. Like the Table interface, the Set interface is
designed so that clients provide functions to inspect the properties of
the members in specific sets.

Applications use sets much the way they use tables. Indeed, the sets
provided by Set are like tables: set members are the keys and the values
associated with the keys are ignored.

A
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9.1 Interface

〈set.h〉≡
#ifndef SET_INCLUDED
#define SET_INCLUDED

#define T Set_T
typedef struct T *T;

〈exported functions 138〉

#undef T
#endif

The functions exported by Set fall into four groups: allocation and deal-
location, basic set operations, set traversal, and operations that accept
set operands and return new sets, such as set union. The functions in the
first three groups are similar to those in the Table interface.

Set_Ts are allocated and deallocated by

〈exported functions 138〉≡
extern T    Set_new (int hint,

int cmp(const void *x, const void *y),
unsigned hash(const void *x));

extern void Set_free(T *set);

Set_new allocates, initializes, and returns a new T. hint is an estimate of
the number of members the set is expected to contain; accurate values of
hint may improve performance, but any nonnegative value is accept-
able. cmp and hash are used to compare two members and to map mem-
bers onto unsigned integers. Given two members x and y, cmp(x,y)
must return an integer less than zero, equal to zero, or greater than zero,
if, respectively, x is less than y, x equals y, or x is greater than y. If
cmp(x,y) is zero, then only one of x or y will appear in a set, and
hash(x) must be equal to hash(y). Set_new can raise Mem_Failed.

If cmp is the null function pointer, the members are assumed to be
atoms; two members x and y are assumed identical if x = y. Likewise, if
hash is the null function pointer, Set_new provides a hash function suit-
able for atoms.
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Set_free deallocates *set and assigns it the null pointer. Set_free
does not deallocate the members; Set_map can be used for that. It is a
checked runtime error to pass a null set or *set to Set_free.

The basic operations are provided by the functions

〈exported functions 138〉+≡
extern int   Set_length(T set);
extern int   Set_member(T set, const void *member);
extern void  Set_put   (T set, const void *member);
extern void *Set_remove(T set, const void *member);

Set_length returns set’s cardinality, or the number of members it con-
tains. Set_member returns one if member is in set and zero if it is not.
Set_put adds member to set, unless it is already there; Set_put can
raise Mem_Failed. Set_remove removes member from set if set con-
tains member, and returns the member removed (which might be a differ-
ent pointer than member). Otherwise, Set_remove does nothing and
returns null. It is a checked runtime error to pass a null set or member to
any of these routines.

The following functions visit all the members in a set.

〈exported functions 138〉+≡
extern void   Set_map    (T set,

void apply(const void *member, void *cl), void *cl);
extern void **Set_toArray(T set, void *end);

Set_map calls apply for each member of set. It passes the member and
the client-specific pointer cl to apply. It does not otherwise inspect cl.
Notice that unlike in Table_map, apply cannot change the members
stored in set. It is a checked runtime error to pass a null apply or set to
Set_map, and for apply to change set by calling Set_put or
Set_remove.

Set_toArray returns a pointer to an N+1-element array that holds the
N elements of set in an arbitrary order. The value of end, which is often
the null pointer, is assigned to the N+1st element of the array.
Set_toArray can raise Mem_Failed. Clients must arrange to deallocate
the returned array. It is a checked runtime error to pass a null set to
Set_toArray.

The functions
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〈exported functions 138〉+≡
extern T Set_union(T s, T t);
extern T Set_inter(T s, T t);
extern T Set_minus(T s, T t);
extern T Set_diff (T s, T t);

perform the four set operations described at the beginning of this chap-
ter. Set_union returns s + t, Set_inter returns s ∗ t, Set_minus
returns s − t, and Set_diff return s / t. All four create and return new
Ts and can raise Mem_Failed. These functions interpret a null s or t as
the empty set, but they always return a new, nonnull T. Thus,
Set_union(s, NULL) returns a copy of s. For each of these functions, it
is a checked runtime error for both s and t to be null and, when both s
and t are nonnull, for them to have different comparison and hash func-
tions. That is, s and t must have been created by calls to Set_new that
specified the same comparison and hash functions.

9.2 Example: Cross-Reference Listings

xref prints cross-reference lists of the identifiers in its input files, which
helps, for example, to find all of the uses of specific identifiers in a pro-
gram’s source files. For example,

% xref xref.c getword.c
...
FILE    getword.c: 6
        xref.c: 18 43 72
...
c       getword.c: 7 8 9 10 11 16 19 22 27 34 35
        xref.c: 141 142 144 147 148
...

says that FILE is used on line 6 in getword.c and on lines 18, 43, and 72
in xref.c. Similarly, c appears on 11 different lines in getword.c and
on 5 lines in xref.c. A line number is listed only once, even if the identi-
fier appears more than once on that line. The output lists the files and
line numbers in sorted order.

If there are no program arguments, xref emits a cross-reference list
of the identifiers in the standard input, omitting the file names shown in
the sample output above:
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% cat xref.c getword.c | xref
...
FILE 18 43 72 157
...
c 141 142 144 147 148 158 159 160 161 162 167 170 173 178 
185 186 ...

xref’s implementation shows how sets and tables can be used
together. It builds a table indexed by identifiers in which each associated
value is another table indexed by file name. The values in this table are
sets of pointers to integers, which hold the line numbers. Figure 9.1
depicts this structure and shows the details for the identifier FILE as
described after the first display above. The value associated with FILE in
the single top-level table (which is the value of identifiers in the code
below) is a second-level Table_T with two keys: atoms for getword.c
and xref.c. The values associated with these keys are Set_Ts that hold
pointers to the line numbers on which FILE appears. There is a second-
level table for each identifier in the top-level table, and a set for each key-
value pair in each second-level table.

Figure 9.1 Cross-reference list data structures
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〈xref.c〉≡
〈xref includes 142〉
〈xref prototypes 143〉
〈xref data 146〉
〈xref functions 142〉

xref’s main function is much like wf’s: It creates the table of identifiers,
then processes its file-name arguments. It opens each file and calls the
function xref with the file pointer, the file name, and the identifier table.
If there are no arguments, it calls xref with a null file pointer, the file
pointer for the standard input, and the identifier table:

〈xref functions 142〉≡
int main(int argc, char *argv[]) {

int i;
Table_T identifiers = Table_new(0, NULL, NULL);

for (i = 1; i < argc; i++) {
FILE *fp = fopen(argv[i], "r");
if (fp == NULL) {

fprintf(stderr, "%s: can't open '%s' (%s)\n",
argv[0], argv[i], strerror(errno));

return EXIT_FAILURE;
} else {

xref(argv[i], fp, identifiers);
fclose(fp);

}
}
if (argc == 1) xref(NULL, stdin, identifiers);
〈print the identifiers 143〉
return EXIT_SUCCESS;

}

〈xref includes 142〉≡
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include "table.h"

xref builds a complicated data structure, and it’s easier to understand
how it is built if you first examine how its contents are printed, which
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you can do by navigating the components in the data structure. Writing
separate chunks or functions for each component helps you to under-
stand the details of this voyage.

The first step builds an array of the identifiers and their values, sorts
the array on the identifiers, and then walks down the array calling
another function, print, to deal with the values. This step is much like
wf’s chunk 〈print the words 123〉.

〈print the identifiers 143〉≡
{

int i;
void **array = Table_toArray(identifiers, NULL);
qsort(array, Table_length(identifiers),

2*sizeof (*array), compare);
for (i = 0; array[i]; i += 2) {

printf("%s", (char *)array[i]);
print(array[i+1]);

}
FREE(array);

}

The keys in identifiers are atoms, so compare, the comparison func-
tion passed to the standard library function qsort, is identical to the
compare used in wf and uses strcmp to compare pairs of identifiers
(page 123 explains qsort’s arguments):

〈xref functions 142〉+≡
int compare(const void *x, const void *y) {

return strcmp(*(char **)x, *(char **)y);
}

〈xref includes 142〉+≡
#include <string.h>

〈xref prototypes 142〉≡
int compare(const void *x, const void *y);

Each value in identifiers is another table, which is passed to print.
The keys in this table are atoms for the file names, so they can be cap-
tured in an array, sorted, and traversed by code similar to that used
above.
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〈xref functions 142〉+≡
void print(Table_T files) {

int i;
void **array = Table_toArray(files, NULL);

qsort(array, Table_length(files), 2*sizeof (*array),
compare);

for (i = 0; array[i]; i += 2) {
if (*(char *)array[i] != '\0')

printf("\t%s:", (char *)array[i]);
〈print the line numbers in the set array[i+1] 144〉
printf("\n");

}
FREE(array);

}

〈xref prototypes 143〉+≡
void print(Table_T);

print can use compare because the keys are just strings. If there are no
file name arguments, each of the tables passed to print has only one
entry, and the key is a zero-length atom. print uses this convention to
avoid printing the file name before emitting the list of line numbers.

Each value in the tables passed to print is a set of line numbers.
Because Set implements sets of pointers, xref represents line numbers
by pointers to integers and adds these pointers to the sets. To print
them, it calls Set_toArray to build and return a null-terminated array of
pointers to integers; it then sorts the array and prints the integers:

〈print the line numbers in the set array[i+1] 144〉≡
{

int j;
void **lines = Set_toArray(array[i+1], NULL);
qsort(lines, Set_length(array[i+1]), sizeof (*lines),

cmpint);
for (j = 0; lines[j]; j++)

printf(" %d", *(int *)lines[j]);
FREE(lines);

}
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cmpint is like compare, but it takes two pointers to pointers to integers
and compares the integers: 

〈xref functions 142〉+≡
int cmpint(const void *x, const void *y) {

if (**(int **)x < **(int **)y)
return -1;

else if (**(int **)x > **(int **)y)
return +1;

else
return 0;

}

〈xref prototypes 143〉+≡
int cmpint(const void *x, const void *y);

xref builds the data structure printed by the code just discussed. It
uses getword to read the identifiers in its input. For each identifier, it
walks down the data structure to the appropriate set and adds the cur-
rent line number to the set:

〈xref functions 142〉+≡
void xref(const char *name, FILE *fp,

Table_T identifiers){
char buf[128];

if (name == NULL)
name = "";

name = Atom_string(name);
linenum = 1;
while (getword(fp, buf, sizeof buf, first, rest)) {

Set_T set;
Table_T files;
const char *id = Atom_string(buf);
〈files ← file table in identifiers associated with id 147〉
〈set ← set in files associated with name 147〉
〈add linenum to set, if necessary 148〉

}
}
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〈xref includes 142〉+≡
#include "atom.h"
#include "set.h"
#include "mem.h"
#include "getword.h"

〈xref prototypes 143〉+≡
void xref(const char *, FILE *, Table_T);

linenum is a global variable that is incremented whenever first trips
over a new-line character; first is the function passed to getword to
identify the initial character in an identifier:

〈xref data 146〉≡
int linenum;

〈xref functions 142〉+≡
int first(int c) {

if (c == '\n')
linenum++;

return isalpha(c) || c == '_';
}

int rest(int c) {
return isalpha(c) || c == '_' || isdigit(c);

}

〈xref includes 142〉+≡
#include <ctype.h>

getword and the first and rest functions passed to it are described
starting on page 119.

〈xref prototypes 143〉+≡
int first(int c);
int rest (int c);

The code that navigates through the tables to the appropriate set must
cope with missing components. For example, an identifier won’t have an
entry in identifiers when it is encountered for the first time, so the
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code creates the file table and adds the identifier–file table pair to iden-
tifiers on the fly:

〈files ← file table in identifiers associated with id 147〉≡
files = Table_get(identifiers, id);
if (files == NULL) {

files = Table_new(0, NULL, NULL);
Table_put(identifiers, id, files);

}

Likewise, there’s no set of line numbers on the first occurrence of an
identifier in a new file, so a new set is created and added to the files table
when it is first needed:

〈set ← set in files associated with name 147〉≡
set = Table_get(files, name);
if (set == NULL) {

set = Set_new(0, intcmp, inthash);
Table_put(files, name, set);

}

The sets are sets of pointers to integers; intcmp and inthash compare
and hash the integers. intcmp is like cmpint, above, but its arguments
are the pointers in the set, so it can call cmpint. The integer itself can be
used as its own hash number:

〈xref functions 142〉+≡
int intcmp(const void *x, const void *y) {

return cmpint(&x, &y);
}

unsigned inthash(const void *x) {
return *(int *)x;

}

〈xref prototypes 143〉+≡
int      intcmp (const void *x, const void *y);
unsigned inthash(const void *x);
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By the time control reaches 〈add linenum to set, if necessary 148〉,
set is the set into which the current line number should be inserted.
This could be done with the code:

int *p;
NEW(p);
*p = linenum;
Set_put(set, p);

But if set already holds linenum, this code creates a memory leak,
because the pointer to the newly allocated space won’t be added to the
table. This leak can be avoided by allocating the space only when line-
num isn’t in set:

〈add linenum to set, if necessary 148〉≡
{

int *p = &linenum;
if (!Set_member(set, p)) {

NEW(p);
*p = linenum;
Set_put(set, p);

}
}

9.3 Implementation

The implementation of Set is much like the implementation of Table. It
represents sets with hash tables and uses the comparison and hash func-
tions to locate members in these tables. The exercises explore some of
the viable alternatives to this implementation and to the Table imple-
mentation.

〈set.c〉≡
#include <limits.h>
#include <stddef.h>
#include "mem.h"
#include "assert.h"
#include "arith.h"
#include "set.h"
#define T Set_T
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〈types 149〉
〈static functions 150〉
〈functions 149〉

A Set_T is a hash table in which the chains hold the members:

〈types 149〉≡
struct T {

int length;
unsigned timestamp;
int (*cmp)(const void *x, const void *y);
unsigned (*hash)(const void *x);
int size;
struct member {

struct member *link;
const void *member;

} **buckets;
};

length is the number of members in the set; timestamp is used to
implement the checked runtime error in Set_map that forbids apply
from changing the set, and cmp and hash hold the comparison and hash
functions.

Like Table_new, Set_new computes the appropriate number of ele-
ments for the buckets array, stores that number in the size field, and
allocates the space for a struct T and the buckets array:

〈functions 149〉≡
T Set_new(int hint,

int cmp(const void *x, const void *y),
unsigned hash(const void *x)) {
T set;
int i;
static int primes[] = { 509, 509, 1021, 2053, 4093,

8191, 16381, 32771, 65521, INT_MAX };

assert(hint >= 0);
for (i = 1; primes[i] < hint; i++)

;
set = ALLOC(sizeof (*set) +

primes[i-1]*sizeof (set->buckets[0]));
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set->size = primes[i-1];
set->cmp  = cmp  ?  cmp : cmpatom;
set->hash = hash ? hash : hashatom;
set->buckets = (struct member **)(set + 1);
for (i = 0; i < set->size; i++)

set->buckets[i] = NULL;
set->length = 0;
set->timestamp = 0;
return set;

}

Set_new uses hint to choose one of the values in primes for the num-
ber of elements in buckets (see page 127). If the members are atoms,
which is indicated by null function pointers for either cmp or hash,
Set_new uses the following comparison and hash functions, which are
the same ones used by Table_new.

〈static functions 150〉≡
static int cmpatom(const void *x, const void *y) {

return x != y;
}

static unsigned hashatom(const void *x) {
return (unsigned long)x>>2;

}

9.3.1 Member Operations

Testing for membership is like looking up a key in a table: hash the
potential member and search the appropriate list emanating from
buckets:

〈functions 149〉+≡
int Set_member(T set, const void *member) {

int i;
struct member *p;

assert(set);
assert(member);
〈search set for member 151〉
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return p != NULL;
}

〈search set for member 151〉≡
i = (*set->hash)(member)%set->size;
for (p = set->buckets[i]; p; p = p->link)

if ((*set->cmp)(member, p->member) == 0)
break;

p is nonnull if the search succeeds and null otherwise, so testing p deter-
mines Set_member’s outcome.

Adding a new member is similar: search the set for the member, and
add it if the search fails.

〈functions 149〉+≡
void Set_put(T set, const void *member) {

int i;
struct member *p;

assert(set);
assert(member);
〈search set for member 151〉
if (p == NULL) {

〈add member to set 151〉
} else

p->member = member;
set->timestamp++;

}

〈add member to set 151〉≡
NEW(p);
p->member = member;
p->link = set->buckets[i];
set->buckets[i] = p;
set->length++;

timestamp is used in Set_map to enforce its checked runtime error.
Set_remove deletes a member by walking a pointer to a pointer to a

member structure, pp, down the appropriate hash chain until *pp is null
or (*pp)->member is the member of interest, in which case the assign-
ment *pp = (*pp)->link below removes the structure from the chain.
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〈functions 149〉+≡
void *Set_remove(T set, const void *member) {

int i;
struct member **pp;

assert(set);
assert(member);
set->timestamp++;
i = (*set->hash)(member)%set->size;
for (pp = &set->buckets[i]; *pp; pp = &(*pp)->link)

if ((*set->cmp)(member, (*pp)->member) == 0) {
struct member *p = *pp;
*pp = p->link;
member = p->member;
FREE(p);
set->length--;
return (void *)member;

}
return NULL;

}

Walking pp down the hash chain is the same idiom used in
Table_remove; see page 130.

Set_remove and Set_put keep track of the number of members in
the set by decrementing and incrementing its length field, which
Set_length returns:

〈functions 149〉+≡
int Set_length(T set) {

assert(set);
return set->length;

}

If the set is nonempty, Set_free must first walk the hash chains
deallocating the member structures before it can deallocate the set itself
and clear *set.

〈functions 149〉+≡
void Set_free(T *set) {

assert(set && *set);
if ((*set)->length > 0) {
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int i;
struct member *p, *q;
for (i = 0; i < (*set)->size; i++)

for (p = (*set)->buckets[i]; p; p = q) {
q = p->link;
FREE(p);

}
}
FREE(*set);

}

Set_map is almost identical to Table_map: It traverses the hash chains
calling apply for each member.

〈functions 149〉+≡
void Set_map(T set,

void apply(const void *member, void *cl), void *cl) {
int i;
unsigned stamp;
struct member *p;

assert(set);
assert(apply);
stamp = set->timestamp;
for (i = 0; i < set->size; i++)

for (p = set->buckets[i]; p; p = p->link) {
apply(p->member, cl);
assert(set->timestamp == stamp);

}
}

One difference is that Set_map passes each member — not a pointer to
each member — to apply, so apply can’t change the pointers in the set.
It can, however, use a cast to change the values these members point to,
which could modify the set’s semantics.

Set_toArray is simpler than Table_toArray; like List_toArray, it
allocates an array and just copies the members into it:

〈functions 149〉+≡
void **Set_toArray(T set, void *end) {

int i, j = 0;
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void **array;
struct member *p;

assert(set);
array = ALLOC((set->length + 1)*sizeof (*array));
for (i = 0; i < set->size; i++)

for (p = set->buckets[i]; p; p = p->link)
array[j++] = (void *)p->member;

array[j] = end;
return array;

}

p->member must be cast from const void * to void * because the array is
not declared const.

9.3.2 Set Operations

All four set operations have similar implementations. s + t, for example,
is implemented by adding each element of s and t to a new set, which
can be done by making a copy of s then adding each member of t to the
copy, if it’s not already in that set:

〈functions 149〉+≡
T Set_union(T s, T t) {

if (s == NULL) {
assert(t);
return copy(t, t->size);

} else if (t == NULL)
return copy(s, s->size);

else {
T set = copy(s, Arith_max(s->size, t->size));
assert(s->cmp == t->cmp && s->hash == t->hash);
{ 〈for each member q in t 154〉

Set_put(set, q->member);
}
return set;

}
}

〈for each member q in t 154〉≡
int i;
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struct member *q;
for (i = 0; i < t->size; i++)

for (q = t->buckets[i]; q; q = q->link)

The internal function copy returns a copy of its argument, which must
be nonnull.

〈static functions 150〉+≡
static T copy(T t, int hint) {

T set;

assert(t);
set = Set_new(hint, t->cmp, t->hash);
{ 〈for each member q in t 154〉

〈add q->member to set 155〉
}
return set;

}

〈add q->member to set 155〉≡
{

struct member *p;
const void *member = q->member;
int i = (*set->hash)(member)%set->size;
〈add member to set 151〉

}

Set_union and copy both have access to privileged information: they
know the representation for sets and can thus specify the size of the
hash table for a new set by passing the appropriate hint to Set_new.
Set_union supplies a hint when it makes a copy of s; it uses the size of
the larger hash table in s or t because the resulting set will have at least
as many members as Set_union’s largest argument. copy could call
Set_put to add each member to the copy, but it uses 〈add q->member to
set 155〉, which does the addition directly, to avoid Set_put’s fruitless
search.

Intersection, s ∗  t, creates a new set with the hash table from s or t,
whichever is smaller, and adds members to the new set only if they
appear in both s and t:
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〈functions 149〉+≡
T Set_inter(T s, T t) {

if (s == NULL) {
assert(t);
return Set_new(t->size, t->cmp, t->hash);

} else if (t == NULL)
return Set_new(s->size, s->cmp, s->hash);

else if (s->length < t->length)
return Set_inter(t, s);

else {
T set = Set_new(Arith_min(s->size, t->size),

s->cmp, s->hash);
assert(s->cmp == t->cmp && s->hash == t->hash);
{ 〈for each member q in t 154〉

if (Set_member(s, q->member))
〈add q->member to set 155〉

}
return set;

}
}

If s has fewer members than t, Set_inter calls itself with s and t
swapped. This causes the for loop in the last else clause to walk through
the smaller set.

Difference, s − t, creates a new set and adds to it the members from s
that do not appear in t. The code below switches the names of the argu-
ments so that it can use the chunk 〈for each member q in t 154〉 to
sequence through s:

〈functions 149〉+≡
T Set_minus(T t, T s) {

if (t == NULL){
assert(s);
return Set_new(s->size, s->cmp, s->hash);

} else if (s == NULL)
return copy(t, t->size);

else {
T set = Set_new(Arith_min(s->size, t->size),

s->cmp, s->hash);
assert(s->cmp == t->cmp && s->hash == t->hash);
{ 〈for each member q in t 154〉
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if (!Set_member(s, q->member))
〈add q->member to set 155〉

}
return set;

}
}

Symmetric difference, s / t, is the set whose elements appear in either
s or t but not both. If s or t is the empty set, then s / t is t or s. Other-
wise, s / t is equivalent to (s − t) + (t − s), which can be done by mak-
ing a pass over s, adding to the new set each member that’s not in t,
then a pass over t, adding to the new set each member that’s not in s.
The chunk 〈for each member q in t 154〉 can be used for both passes by
swapping the values of s and t between passes:

〈functions 149〉+≡
T Set_diff(T s, T t) {

if (s == NULL) {
assert(t);
return copy(t, t->size);

} else if (t == NULL)
return copy(s, s->size);

else {
T set = Set_new(Arith_min(s->size, t->size),

s->cmp, s->hash);
assert(s->cmp == t->cmp && s->hash == t->hash);
{ 〈for each member q in t 154〉

if (!Set_member(s, q->member))
〈add q->member to set 155〉

}
{ T u = t; t = s; s = u; }
{ 〈for each member q in t 154〉

if (!Set_member(s, q->member))
〈add q->member to set 155〉

}
return set;

}
}

More efficient implementations of these four operations are possible;
some of them are explored in the exercises. A special case, which might
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be important for some applications, is when the hash tables in s and t
are the same size; see Exercise 9.7.

Further Reading

The sets exported by Set are modeled on the sets in Icon (Griswold and
Griswold 1990), and the implementation is similar to Icon’s (Griswold
and Griswold 1986). Bit vectors are often used to represent sets with
fixed, small universes; Chapter 13 describes an interface that uses this
approach.

Icon is one of the few languages that have sets as a built-in data type.
Sets are the central data type in SETL, and most of its operators and con-
trol structures are designed to manipulate sets.

Exercises

9.1 Implement Set using Table.

9.2 Implement Table using Set.

9.3 The implementations of Set and Table have much in common.
Design and implement a third interface that distills their common
properties. The purpose of this interface is to support the imple-
mentations of ADTs like sets and tables. Reimplement Set and
Table using your new interface.

9.4 Design an interface for bags. A bag is like a set but members can
appear more than once; for example, { 1 2 3 } is a set of integers,
and { 1 1 2 2 3 } is a bag of integers. Implement your interface
using the support interface designed in the previous exercise.

9.5 copy makes a copy of its set argument one member at a time.
Since it knows the number of members in the copy, it could allo-
cate all of the member structures at once and then dole them out
to the appropriate hash chains as it fills in the copy. Implement
this scheme and measure its benefits.

9.6 Some of the set operations might be made more efficient by stor-
ing the hash numbers in the member structures so that hash is
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called only once for each member, and the comparison functions
are called only when the hash numbers are equal. Analyze the
expected savings of this improvement and, if it looks worthwhile,
implement it and measure the results.

9.7 When s and t have the same number of buckets, s + t is equal to
the union of the subsets whose members are those on the same
hash chain. That is, each hash chain in s + t is the union of the ele-
ments in the corresponding hash chains of s and t. This occurs
frequently because many applications specify the same hint
whenever they call Set_new. Change the implementations of s + t,
s ∗  t, s − t, and s / t to detect this case and use the appropriate
simpler, more efficient implementation.

9.8 If an identifier appears on several consecutive lines, xref emits
each line number. For example:

c       getword.c: 7 8 9 10 11 16 19 22 27 34 35

Modify xref.c so that it replaces two or more consecutive line
numbers by a line range:

c       getword.c: 7-11 16 19 22 27 34-35

9.9 xref allocates a lot of memory, but deallocates only the arrays
created by Table_toArray. Change xref so that it eventually
deallocates everything it allocates (except the atoms, of course).
It’s easiest to do so incrementally as the data structure is being
printed. Use the solution to Exercise 5.5 to check that you’ve
deallocated everything.

9.10 Explain why cmpint and intcmp use explicit comparisons to com-
pare integers instead of returning the result of subtracting them.
That is, what’s wrong with the following — apparently much sim-
pler — version of cmpint?

int cmpint(const void *x, const void *y) {
return **(int **)x - **(int **)y;

}
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DYNAMIC ARRAYS

n array is a homogeneous sequence of values in which the ele-
ments in the sequence are associated one-to-one with indices in a
contiguous range. Arrays in some form appear as built-in data

types in virtually all programming languages. In some languages, like C,
all array indices have the same lower bounds, and in other languages,
like Modula-3, each array can have its own bounds. In C, all arrays have
indices that start at zero.

Array sizes are specified at either compile time or runtime. The sizes
of static arrays are known at compile time. In C, for example, declared
arrays must have sizes known at compile time; that is, in the declaration
int a[n], n must be constant expression. A static array may be allocated
at runtime; for example, local arrays are allocated at runtime when the
function in which they appear is called, but their sizes are known at com-
pile time.

The arrays returned by functions like Table_toArray are dynamic
arrays because space for them is allocated by calling malloc or an equiv-
alent allocation function. So, their sizes can be determined at runtime.
Some languages, such as Modula-3, have linquistic support for dynamic
arrays. In C, however, they must be constructed explicitly as illustrated
by functions like Table_toArray.

The various toArray functions show just how useful dynamic arrays
are; the Array ADT described in this chapter provides a similar but more
general facility. It exports functions that allocate and deallocate dynamic
arrays, access them with bounds checks, and expand or contract them to
hold more or fewer elements.

This chapter also describes the ArrayRep interface. It reveals the rep-
resentation for dynamic arrays for those few clients that need more effi-

A
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cient access to the array elements. Together, Array and ArrayRep
illustrate a two-level interface or a layered interface. Array specifies a
high-level view of an array ADT, and ArrayRep specifies another, more
detailed view of the ADT at a lower level. The advantage of this organiza-
tion is that importing ArrayRep clearly identifies those clients that
depend on the representation of dynamic arrays. Changes to the repre-
sentation thus affect only them, not the presumably much larger popula-
tion of clients that import Array.

10.1 Interfaces

The Array ADT

〈array.h〉≡
#ifndef ARRAY_INCLUDED
#define ARRAY_INCLUDED

#define T Array_T
typedef struct T *T;

〈exported functions 162〉

#undef T
#endif

exports functions that operate on an array of N elements accessed by
indices zero through N−1. Each element in a particular array is a fixed
size, but different arrays can have elements of different sizes. Array_Ts
are allocated and deallocated by

〈exported functions 162〉≡
extern T    Array_new (int length, int size);
extern void Array_free(T *array);

Array_new allocates, initializes, and returns a new array of length ele-
ments with bounds zero through length−1, unless length is zero, in
which case the array has no elements. Each element occupies size bytes.
The bytes in each element are initialized to zero. size must include any
padding that may be required for alignment, so that the actual array can
be created by allocating length•size bytes when length is positive. It
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is a checked runtime error for length to be negative or for size to be
nonpositive, and Array_new can raise Mem_Failed.

Array_free deallocates and clears *array. It is a checked runtime
error for array or *array to be null.

Unlike most of the other ADTs in this book, which build structures of
void pointers, the Array interface places no restrictions on the values of
the elements; each element is just a sequence of size bytes. The ration-
ale for this design is that Array_Ts are used most often to build other
ADTs; the sequences described in Chapter 11 are an example.

The functions

〈exported functions 162〉+≡
extern int Array_length(T array);
extern int Array_size  (T array);

return the number of elements in array and their size.
Array elements are accessed by

〈exported functions 162〉+≡
extern void *Array_get(T array, int i);
extern void *Array_put(T array, int i, void *elem);

Array_get returns a pointer to element number i; it’s analogous to
&a[i] when a is a declared C array. Clients access the value of the ele-
ment by dereferencing the pointer returned by Array_get. Array_put
overwrites the value of element i with the new element pointed to by
elem. Unlike Table_put, Array_put returns elem. It can’t return the
previous value of element i because the elements are not necessarily
pointers, and they can be any number of bytes long.

It is a checked runtime error for i to be greater than or equal to the
length of array, or for elem to be null. It is an unchecked runtime error
to call Array_get and then change the size of array via Array_resize
before dereferencing the pointer returned by Array_get. It is also an
unchecked runtime error for the storage beginning at elem to overlap in
any way with the storage of array’s ith element.

〈exported functions 162〉+≡
extern void Array_resize(T array, int length);
extern T    Array_copy  (T array, int length);
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Array_resize changes the size of array so that it holds length ele-
ments, expanding or contracting it as necessary. If length exceeds the
current length of the array, the new elements are initialized to zero. Call-
ing Array_resize invalidates any values returned by previous calls to
Array_get. Array_copy is similar, but returns a copy of array that
holds its first length elements. If length exceeds the number of ele-
ments in array, the excess elements in the copy are initialized to zero.
Array_resize and Array_copy can raise Mem_Failed.

Array has no functions like Table_map and Table_toArray because
Array_get provides the machinery necessary to perform the equivalent
operations.

It is a checked runtime error to pass a null T to any function in this
interface.

The ArrayRep interface reveals that an Array_T is represented by a
pointer to a descriptor — a structure whose fields give the number of ele-
ments in the array, the size of the elements, and a pointer to the storage
for the array.

〈arrayrep.h〉≡
#ifndef ARRAYREP_INCLUDED
#define ARRAYREP_INCLUDED

#define T Array_T

struct T {
int length;
int size;
char *array;

};

extern void ArrayRep_init(T array, int length,
int size, void *ary);

#undef T
#endif

Figure 10.1 shows the descriptor for an array of 100 integers returned by
Array_new(100, sizeof int) on a machine with four-byte integers. If
the array has no elements, the array field is null. Array descriptors are
sometimes called dope vectors.
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Clients of ArrayRep may read the fields of a descriptor but may not
write them; writing them is an unchecked runtime error. ArrayRep guar-
antees that if array is a T and i is nonnegative and less than
array->length,

array->array + i*array->size

is the address of element i.
ArrayRep also exports ArrayRep_init, which initializes the fields in

the Array_T structure pointed to by array to the values of the argu-
ments length, size, and ary. This function is provided so that clients
can initialize Array_Ts they’ve embedded in other structures. It is a
checked runtime error for array to be null, size to be nonpositive,
length to be nonzero, and ary to be null; also for length to be nonpos-
itive and ary to be nonnull. It is an unchecked runtime error to initialize
a T structure by means other than calling ArrayRep_init.

10.2 Implementation

A single implementation exports both the Array and ArrayRep
interfaces:

Figure 10.1 The Array_T created by Array_new(100, sizeof int)
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〈array.c〉≡
#include <stdlib.h>
#include <string.h>
#include "assert.h"
#include "array.h"
#include "arrayrep.h"
#include "mem.h"

#define T Array_T

〈functions 166〉

Array_new allocates space for a descriptor and for the array itself if
length is positive, and calls ArrayRep_init to initialize the descriptor’s
fields:

〈functions 166〉≡
T Array_new(int length, int size) {

T array;

NEW(array);
if (length > 0)

ArrayRep_init(array, length, size,
CALLOC(length, size));

else
ArrayRep_init(array, length, size, NULL);

return array;
}

ArrayRep_init is the only valid way to initialize the fields of descrip-
tors; clients that allocate descriptors by other means must call Ar-
rayRep_init to initialize them.

〈functions 166〉+≡
void ArrayRep_init(T array, int length, int size,

void *ary) {
assert(array);
assert(ary && length>0 || length==0 && ary==NULL);
assert(size > 0);
array->length = length;
array->size   = size;
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if (length > 0)
array->array = ary;

else
array->array = NULL;

}

Calling ArrayRep_init to initialize a T structure helps reduce coupling:
These calls clearly identify clients that allocate descriptors themselves
and thus depend on the representation. It’s possible to add fields with-
out affecting these clients as long as ArrayRep_init doesn’t change.
This scenario would occur, for example, if a field for an identifying serial
number were added to the T structure, and this field were initialized
automatically by ArrayRep_init.

Array_free deallocates the array itself and the T structure, and clears
its argument:

〈functions 166〉+≡
void Array_free(T *array) {

assert(array && *array);
FREE((*array)->array);
FREE(*array);

}

Array_free doesn’t have to check if (*array)->array is null because
FREE accepts null pointers.

Array_get and Array_put fetch and store elements in an Array_T:

〈functions 166〉+≡
void *Array_get(T array, int i) {

assert(array);
assert(i >= 0 && i < array->length);
return array->array + i*array->size;

}

void *Array_put(T array, int i, void *elem) {
assert(array);
assert(i >= 0 && i < array->length);
assert(elem);
memcpy(array->array + i*array->size, elem,

array->size);
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return elem;
}

Notice that Array_put returns its third argument, not the address of the
array element into which those bytes were just stored.

Array_length and Array_size return the similarly named descriptor
fields:

〈functions 166〉+≡
int Array_length(T array) {

assert(array);
return array->length;

}

int Array_size(T array) {
assert(array);
return array->size;

}

Clients of ArrayRep may access these fields directly from the descriptor.
Array_resize calls Mem’s RESIZE to change the number of elements

in the array, and changes the array’s length field accordingly.

〈functions 166〉+≡
void Array_resize(T array, int length) {

assert(array);
assert(length >= 0);
if (length == 0)

FREE(array->array);
else if (array->length == 0)

array->array = ALLOC(length*array->size);
else

RESIZE(array->array, length*array->size);
array->length = length;

}

Unlike with Mem’s RESIZE, a new length of zero is legal, in which case
the array is deallocated, and henceforth the descriptor describes an
empty dynamic array.

Array_copy is much like Array_resize, except that it copies array’s
descriptor and part or all of its array:
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〈functions 166〉+≡
T Array_copy(T array, int length) {

T copy;

assert(array);
assert(length >= 0);
copy = Array_new(length, array->size);
if (copy->length >= array->length
&& array->length > 0)

memcpy(copy->array, array->array,
array->length*array->size);

else if (array->length > copy->length
&& copy->length > 0)

memcpy(copy->array, array->array,
copy->length*array->size);

return copy;
}

Further Reading

Some languages support variants of dynamic arrays. Modula-3 (Nelson
1991), for example, permits arrays with arbitrary bounds to be created
during execution, but they can’t be expanded or contracted. Lists in Icon
(Griswold and Griswold 1990) are like dynamic arrays that can be ex-
panded or contracted by adding or deleting elements from either end;
these are much like the sequences described in the next chapter. Icon
also supports fetching sublists from a list and replacing a sublist with a
list of a different size.

Exercises

10.1 Design and implement an ADT that provides dynamic arrays of
pointers. It should provide “safe” access to the elements of these
arrays via functions similar in spirit to the functions provided by
Table. Use Array or Array_Rep in your implementation.

10.2 Design an ADT for dynamic matrices — arrays with two dimen-
sions — and implement it using Array. Can you generalize your
design to arrays of N dimensions?
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10.3 Design an implement and ADT for sparse dynamic arrays — arrays
in which most of the elements are zero. Your design should accept
an array-specific value for zero and the implementation should
store only those elements that are not equal to zero.

10.4 Add the function

extern void Array_reshape(T array, int length,
int size);

to the Array interface and its implementation. Array_reshape
changes the number of elements in array and the size of each ele-
ment to length and size, respectively. Like Array_resize, the
reshaped array retains the first length elements of the original
array; if length exceeds the original length, the excess elements
are set to zero. The ith element in array becomes the ith element
in the reshaped array. If size is less than the original size, each
element is truncated; if size exceeds the original size, the excess
bytes are set to zero.
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sequence holds N values associated with the integer indices zero
through N−1 when N is positive. An empty sequence holds no
values. Like arrays, values in a sequence may be accessed by

indexing; they can also be added to or removed from either end of a
sequence. Sequences expand automatically as necessary to accommodate
their contents. Values are pointers.

Sequences are one of the most useful ADTs in this book. Despite their
relatively simple specification, they can be used as arrays, lists, stacks,
queues, and deques, and they often subsume the facilities of separate
ADTs for these data structures. A sequence can be viewed as a more
abstract version of the dynamic array described in the previous chapter.
A sequence hides bookkeeping and resizing details in its imple-
mentation.

11.1 Interface

A sequence is an instance of the opaque pointer type defined in the Seq
interface:

〈seq.h〉≡
#ifndef SEQ_INCLUDED
#define SEQ_INCLUDED

#define T Seq_T
typedef struct T *T;

A
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〈exported functions 172〉

#undef T
#endif

It is a checked runtime error to pass a null T to any routine in this
interface.

Sequences are created by the functions

〈exported functions 172〉≡
extern T Seq_new(int hint);
extern T Seq_seq(void *x, ...);

Seq_new creates and returns an empty sequence. hint is an estimate of
the maximum number of values the new sequence will hold. If that num-
ber is unknown, a hint of zero creates a small sequence. Sequences
expand as necessary to hold their contents regardless of the value of
hint. It is a checked runtime error for hint to be negative.

Seq_seq creates and returns a sequence whose values are initialized
to its nonnull pointer arguments. The argument list is terminated by the
first null pointer. Thus

Seq_T names;
…
names = Seq_seq("C", "ML", "C++", "Icon", "AWK", NULL);

creates a sequence with five values and assigns it to names. The values in
the argument list are associated with the indices zero through four. The
pointers passed in the variable part of Seq_seq’s argument list are
assumed to be void pointers, so programmers must provide casts when
passing other than char or void pointers; see page 105. Seq_new and
Seq_seq can raise Mem_Failed.

〈exported functions 172〉+≡
extern void Seq_free(T *seq);

deallocates the sequence *seq and clears *seq. It is a checked runtime
error for seq or *seq to be null pointers.

〈exported functions 172〉+≡
extern int Seq_length(T seq);
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returns the number of values in the sequence seq.
The values in an N-value sequence are associated with the integer indi-

ces zero through N−1. These values are accessed by the functions

〈exported functions 172〉+≡
extern void *Seq_get(T seq, int i);
extern void *Seq_put(T seq, int i, void *x);

Seq_get returns the ith value in seq. Seq_put changes the ith value to
x and returns the previous value. It is a checked runtime error for i to be
equal to or greater than N. Seq_get and Seq_put access the ith value in
constant time.

A sequence is expanded by adding values to either end:

〈exported functions 172〉+≡
extern void *Seq_addlo(T seq, void *x);
extern void *Seq_addhi(T seq, void *x);

Seq_addlo adds x to the low end of seq and returns x. Adding a value to
the beginning of a sequence increments both the indices of the existing
values and the length of the sequence by one. Seq_addhi adds x to the
high end of seq and returns x. Adding a value to the end of a sequence
increments the length of the sequence by one. Seq_addlo and
Seq_addhi can raise Mem_Failed.

Similarly, a sequence is contracted by removing values from either
end:

〈exported functions 172〉+≡
extern void *Seq_remlo(T seq);
extern void *Seq_remhi(T seq);

Seq_remlo removes and returns the value at the low end of seq. Remov-
ing the value at the beginning of a sequence decrements both the indices
of the remaining values and the length of the sequence by one.
Seq_remhi removes and returns the value at the high end of seq.
Removing the value at the end of a sequence decrements the length of
the sequence by one. It is a checked runtime error to pass an empty
sequence to Seq_remlo or Seq_remhi.
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11.2 Implementation

As suggested at the beginning of this chapter, a sequence is a high-level
abstraction of a dynamic array. Its representation thus includes a dy-
namic array — not a pointer to an Array_T, but an Array_T structure it-
self — and its implementation imports both Array and ArrayRep:

〈seq.c〉≡
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include "assert.h"
#include "seq.h"
#include "array.h"
#include "arrayrep.h"
#include "mem.h"

#define T Seq_T

struct T {
struct Array_T array;
int length;
int head;

};

〈static functions 179〉
〈functions 175〉

The length field holds the number of values in the sequence and the
array field holds the array in which the values are stored. This array
always has at least length elements, but some of them are unused when
length is less than array.length. The array is used as a circular buffer
to hold the sequence values. The zeroth value of the sequence is stored
in element number head of the array, and successive values are stored in
successive elements modulo the array size. That is, if the ith value in the
sequence is stored in element number array.length-1, the i+1st value
is stored in element zero of the array. Figure 11.1 shows one way in
which a seven-value sequence can be stored in a 16-element array. The
box on the left is the Seq_T with its embedded Array_T, shown lightly
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shaded. The box on the right is the array; its shading shows the elements
occupied by values in the sequence.

As detailed below, values are added to the beginning of the sequence
by decrementing head modulo the array size, and they are removed from
the beginning by incrementing head modulo the array size. A sequence
always has an array even when it’s empty.

A new sequence is created by allocating a dynamic array that can hold
hint pointers, or 16 pointers if hint is zero:

〈functions 175〉≡
T Seq_new(int hint) {

T seq;

assert(hint >= 0);
NEW0(seq);
if (hint == 0)

hint = 16;
ArrayRep_init(&seq->array, hint, sizeof (void *),

ALLOC(hint*sizeof (void *)));
return seq;

}

Using NEW0 initializes the length and head fields to zero. Seq_seq calls
Seq_new to create an empty sequence, then crawls through its argu-
ments calling Seq_addhi to append each one to the new sequence:

Figure 11.1 A 16-element sequence
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〈functions 175〉+≡
T Seq_seq(void *x, ...) {

va_list ap;
T seq = Seq_new(0);

va_start(ap, x);
for ( ; x; x = va_arg(ap, void *))

Seq_addhi(seq, x);
va_end(ap);
return seq;

}

Seq_seq uses the macros for handling variable length argument lists
much as List_list does; see page 108.

Deallocating a sequence can be done by Array_free, which deallo-
cates the array and its descriptor:

〈functions 175〉+≡
void Seq_free(T *seq) {

assert(seq && *seq);
assert((void *)*seq == (void *)&(*seq)->array);
Array_free((Array_T *)seq);

}

The call to Array_free works only because the address of *seq is equal
to &(*seq)->array as asserted in the code. That is, the Array_T struc-
ture must be the first field of the Seq_T structure so that the pointer
returned by NEW0 in Seq_new is a pointer both to a Seq_T and to an
Array_T.

Seq_length simply returns the sequence’s length field:

〈functions 175〉+≡
int Seq_length(T seq) {

assert(seq);
return seq->length;

}

The ith value in a sequence is stored in the (head + i) mod
array.length element of its array. A type cast makes it possible to
index the array directly:
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〈seq[i] 177〉≡
((void **)seq->array.array)[

(seq->head + i)%seq->array.length]

Seq_get simply returns this array element, and Seq_put sets it to x:

〈functions 175〉+≡
void *Seq_get(T seq, int i) {

assert(seq);
assert(i >= 0 && i < seq->length);
return 〈seq[i] 177〉;

}

void *Seq_put(T seq, int i, void *x) {
void *prev;

assert(seq);
assert(i >= 0 && i < seq->length);
prev = 〈seq[i] 177〉;
〈seq[i] 177〉 = x;
return prev;

}

Seq_remlo and Seq_remhi remove values from a sequence.
Seq_remhi is the simpler of the two because it just decrements the
length field and returns the value indexed by the new value of length:

〈functions 175〉+≡
void *Seq_remhi(T seq) {

int i;

assert(seq);
assert(seq->length > 0);
i = --seq->length;
return 〈seq[i] 177〉;

}

Seq_remlo is slightly more complicated because it must return the value
indexed by head (which is the value at index zero in the sequence), incre-
ment head modulo the array size, and decrement length:
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〈functions 175〉+≡
void *Seq_remlo(T seq) {

int i = 0;
void *x;

assert(seq);
assert(seq->length > 0);
x = 〈seq[i] 177〉;
seq->head = (seq->head + 1)%seq->array.length;
--seq->length;
return x;

}

Seq_addlo and Seq_addhi add values to a sequence and thus must
cope with the possibility that its array is full, which occurs when length
is equal to array.length. When this condition occurs, both functions
call expand to enlarge the array; it does this by calling Array_resize.
Seq_addhi is again the simpler of the two functions because, after
checking for expansion, it stores the new value at the index given by
length and increments length:

〈functions 175〉+≡
void *Seq_addhi(T seq, void *x) {

int i;

assert(seq);
if (seq->length == seq->array.length)

expand(seq);
i = seq->length++;
return 〈seq[i] 177〉 = x;

}

Seq_addlo also checks for expansion, but then decrements head modulo
the array size and stores x in the array element indexed by the new value
of head, which is the value at index zero in the sequence:

〈functions 175〉+≡
void *Seq_addlo(T seq, void *x) {

int i = 0;
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assert(seq);
if (seq->length == seq->array.length)

expand(seq);
if (--seq->head < 0)

seq->head = seq->array.length - 1;
seq->length++;
return 〈seq[i] 177〉 = x;

}

Alternatively, Seq_addlo could decrement seq->head with

seq->head = Arith_mod(seq->head - 1, seq->array.length);

expand encapulates a call to Array_resize that doubles the size of a
sequence’s array:

〈static functions 179〉≡
static void expand(T seq) {

int n = seq->array.length;

Array_resize(&seq->array, 2*n);
if (seq->head > 0)

〈slide tail down 179〉
}

As this code suggests, expand must also cope with the use of the array
as a circular buffer. Unless head just happens to be zero, the elements at
the tail end of the original array — from head down — must be moved to
the end of enlarged array to open up the middle, as illustrated in Figure
11.2, and head must be adjusted accordingly:

〈slide tail down 179〉≡
{

void **old = &((void **)seq->array.array)[seq->head];
memcpy(old+n, old, (n - seq->head)*sizeof (void *));
seq->head += n;

}
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Further Reading

Sequences are nearly identical to lists in Icon (Griswold and Griswold
1990), but the names of the operations are taken from the Sequence
interface in the library that accompanies the DEC implementation of
Modula-3 (Horning, et al. 1993). The implementation described in this
chapter is also similar to the DEC implementation. Exercise 11.1 explores
the Icon implementation.

Exercises

11.1 Icon implements lists — its version of sequences — with a doubly
linked list of chunks where each chunk holds, say, M values. This
representation avoids the use of Array_resize because new
chunks can be added to either end of the list as necessary to sat-
isfy calls to Seq_addlo and Seq_addhi. The disadvantage of this
representation is that the chunks must be traversed to access the
ith value, which takes time proportional to i/M. Use this represen-
tation to build a new implementation for Seq and develop some
test programs to measure its performance. Suppose that an access

Figure 11.2 Expanding a sequence

old

old+n
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to value i is almost always followed by an access to value i−1 or
i+1; can you modify your implementation to make this case run in
constant time?

11.2 Devise an implementation for Seq that doesn’t use Array_resize.
For example, when the original array of N elements fills up, it
could be converted to an array of pointers to arrays, each of which
holds, say, 2N elements, so the converted sequence can hold 
values. If N is 1,024, the converted sequence can hold over two
million elements, each of which can be accessed in constant time.
Each of the 2N-element arrays in this “edge-vector” representation
can be allocated lazily, that is, only after a value is stored in it.

11.3 Suppose you forbid Seq_addlo and Seq_remlo; devise an imple-
mentation that allocates space incrementally but can access any
element in logarithmic time. Hint: Skip lists (Pugh 1990).

11.4 Sequences are expanded but never contracted. Modify Seq-
>remlo and Seq->remhi so that they contract a sequence when-
ever more than half of its array is unused; that is, when seq-
>length becomes less than seq->array.length/2. When is this
modification a bad idea? Hint: thrashing.

11.5 Implement xref again using sequences instead of sets to hold the
line numbers. Since the files are read sequentially, you won’t have
to sort the line numbers because they will appear in the sequences
in increasing order.

11.6 Rewrite Seq_free so that the assertion it now uses is unneces-
sary. Be careful — you cannot use Array_free.

2N2
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RINGS

ring is much like a sequence: It holds N values associated with
the integer indices zero through N−1 when N is positive. An
empty ring holds no values. Values are pointers. Like the values

in a sequence, values in a ring may be accessed by indexing.
Unlike a sequence, however, values can be added to a ring anywhere,

and any value in a ring can be removed. In addition, the values can be
renumbered: “rotating” a ring left decrements the index of each value by
one modulo the length of the ring; rotating it right increments the indi-
ces by one modulo the ring length. The price for the flexibility of adding
values to and removing values from arbitrary locations in a ring is that
accessing the ith value is not guaranteed to take constant time.

12.1 Interface

As suggested by its name, a ring is an abstraction of a doubly linked list,
but the Ring ADT reveals only that a ring is an instance of an opaque
pointer type:

〈ring.h〉≡
#ifndef RING_INCLUDED
#define RING_INCLUDED

#define T Ring_T
typedef struct T *T;

〈exported functions 184〉

A

183
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#undef T
#endif

It is a checked runtime error to pass a null T to any routine in this
interface.

Rings are created by the functions that parallel similar functions in the
Seq interface:

〈exported functions 184〉≡
extern T Ring_new (void);
extern T Ring_ring(void *x, ...);

Ring_new creates and returns an empty ring. Ring_ring creates and
returns a ring whose values are initialized to its nonnull pointer argu-
ments. The argument list is terminated by the first null pointer argu-
ment. Thus

Ring_T names;
...
names = Ring_ring("Lists", "Tables", "Sets", "Sequences",

"Rings", NULL);

creates a ring with the five values shown, and assigns it to names. The
values in the argument list are associated with the indices zero through
four. The pointers passed in the variable part of the ring’s argument list
are assumed to be void pointers, so programmers must provide casts
when passing other than char or void pointers; see page 105. Ring_new
and Ring_ring can raise Mem_Failed.

〈exported functions 184〉+≡
extern void Ring_free  (T *ring);
extern int  Ring_length(T  ring);

Ring_free deallocates the ring in *ring and clears *ring. It is
a checked runtime error for ring or *ring to be null pointers.
Ring_length returns the number of values in ring.

The values in a ring of length N are associated with the integer indices
zero through N−1. These values are accessed by the functions
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〈exported functions 184〉+≡
extern void *Ring_get(T ring, int i);
extern void *Ring_put(T ring, int i, void *x);

Ring_get returns the ith value in ring. Ring_put changes the ith value
in ring to x and returns the previous value. It is a checked runtime error
for i to be equal to or greater than N.

Values may be added anywhere in a ring by

〈exported functions 184〉+≡
extern void *Ring_add(T ring, int pos, void *x);

Ring_add adds x to ring at position pos and returns x. The positions in
a ring with N values specify locations between values as depicted in the
following diagram, which shows a five-element ring holding the integers
zero through four.

The middle row of numbers are the indices, the top row are the positive
positions, and the bottom row are the nonpositive positions. The non-
positive positions specify locations from the end of the ring without
knowing its length. The positions zero and one are also valid for empty
rings. Ring_add accepts either form of position. It is a checked runtime
error to specify a nonexistent position, which inlcudes the positive posi-
tions than exceed one plus the length of the ring and the negative posi-
tions whose absolute values exceed the length of the ring.

Adding a new value increments both the indices of the values to its
right and the length of the ring by one. Ring_add can raise Mem_Failed.

The functions

〈exported functions 184〉+≡
extern void *Ring_addlo(T ring, void *x);
extern void *Ring_addhi(T ring, void *x);

0 1 2 3 4

1 2 3 4 5 6

–5 –4 –3 –2 –1 0
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are equivalent to their similarly named counterparts in the Seq interface.
Ring_addlo is equivalent to Ring_add(ring, 1, x), and Ring_addhi is
equivalent to Ring_add(ring, 0, x). Ring_addlo and Ring_addhi can
raise Mem_Failed.

The function

〈exported functions 184〉+≡
extern void *Ring_remove(T ring, int i);

removes and returns the ith value in ring. Removing a value decre-
ments the indices of the remaining values to its right by one and the
length of the ring by one. It is a checked runtime error for i to be equal
to or exceed the length of ring.

Like the Seq functions with similar names, the functions

〈exported functions 184〉+≡
extern void *Ring_remlo(T ring);
extern void *Ring_remhi(T ring);

remove and return the value at the low or high end of ring. Ring_remlo
is equivalent to Ring_remove(ring, 0), and Ring_remhi is equivalent
to Ring_remove(ring, Ring_length(ring) - 1). It is a checked run-
time error to pass an empty ring to Ring_remlo or Ring_remhi.

The name “ring” comes from the function

〈exported functions 184〉+≡
extern void Ring_rotate(T ring, int n);

which renumbers the values in ring by “rotating” it left or right. If n is
positive, ring is rotated to the right — clockwise — n values, and the
indices of each value are incremented by n modulo the length of ring.
Rotating an eight-value ring that holds the strings A through H three
places to the right is illustrated by the following diagram; the arrows
point to the first element.

D
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G
H

A

F
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A
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If n is negative, ring is rotated to the left — counterclockwise — n val-
ues and the indices of each value are decremented by n modulo the
length of ring. If n modulo the length of the ring is zero, Ring_rotate
has no effect. It is a checked runtime error for the absolute value of n to
exceed the length of ring.

12.2 Implementation

The implementation represents a ring as a structure with two fields:

〈ring.c〉≡
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include "assert.h"
#include "ring.h"
#include "mem.h"

#define T Ring_T

struct T {
struct node {

struct node *llink, *rlink;
void *value;

} *head;
int length;

};

〈functions 188〉

The head field points to a doubly linked list of node structures in which
the value fields hold the values in the ring. head points to the value
associated with index zero; successive values are in the nodes linked by
the rlink fields, and each node’s llink field points to its predecessor.
Figure 12.1 shows the structures for a ring with six values. The dotted
lines emanate from the llink fields and go counterclockwise, and the
solid lines emanate from the rlink fields and go clockwise.

An empty ring has a zero length field and a null head field, which is
what Ring_new returns:
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〈functions 188〉≡
T Ring_new(void) {

T ring;

NEW0(ring);
ring->head = NULL;
return ring;

}

Ring_ring creates an empty ring, then calls Ring_addhi to append each
of its pointer arguments up to but not including the first null pointer:

〈functions 188〉+≡
T Ring_ring(void *x, ...) {

va_list ap;
T ring = Ring_new();

va_start(ap, x);
for ( ; x; x = va_arg(ap, void *))

Ring_addhi(ring, x);
va_end(ap);
return ring;

}

Figure 12.1 A six-element ring
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Deallocating a ring first deallocates the node structures, then deallo-
cates the ring header. It doesn’t matter in which order the nodes are
deallocated, so Ring_free just follows the rlink pointers.

〈functions 188〉+≡
void Ring_free(T *ring) {

struct node *p, *q;

assert(ring && *ring);
if ((p = (*ring)->head) != NULL) {

int n = (*ring)->length;
for ( ; n-- > 0; p = q) {

q = p->rlink;
FREE(p);

}
}
FREE(*ring);

}

The function

〈functions 188〉+≡
int Ring_length(T ring) {

assert(ring);
return ring->length;

}

returns the number of values in a ring.
Ring_get and Ring_put must both find the ith value in a ring. Doing

this amounts to traversing the list to the ith node structure, which is
accomplished by the following chunk.

〈q ← ith node 189〉≡
{

int n;
q = ring->head;
if (i <= ring->length/2)

for (n = i; n-- > 0; )
q = q->rlink;

else
for (n = ring->length - i; n-- > 0; )
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q = q->llink;
}

This code takes the shortest route to the ith node: If i is does not exceed
one-half the ring’s length, the first for loop goes clockwise via the rlink
pointers to the desired node. Otherwise, the second for loop goes coun-
terclockwise via the llink pointers. In Figure 12.1, for example, values 0
through 3 are reached by going right, and values 4 and 5 are reached by
going left.

Given this chunk, the two access functions are easy:

〈functions 188〉+≡
void *Ring_get(T ring, int i) {

struct node *q;

assert(ring);
assert(i >= 0 && i < ring->length);
〈q ← ith node 189〉
return q->value;

}

void *Ring_put(T ring, int i, void *x) {
struct node *q;
void *prev;

assert(ring);
assert(i >= 0 && i < ring->length);
〈q ← ith node 189〉
prev = q->value;
q->value = x;
return prev;

}

The functions that add values to a ring must allocate a node, initialize
it, and insert it into its proper place in the doubly linked list. They must
also cope with adding a node to an empty ring. Ring_addhi is the easiest
one of these functions: It adds a new node to the left of the node pointed
to by head, as shown in Figure 12.2. Shading distinguishes the new node,
and the heavier lines in the righthand figure indicate which links are
changed. Here’s the code:
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〈functions 188〉+≡
void *Ring_addhi(T ring, void *x) {

struct node *p, *q;

assert(ring);
NEW(p);
if ((q = ring->head) != NULL)

〈insert p to the left of q 191〉
else

〈make p ring’s only value 191〉
ring->length++;
return p->value = x;

}

Adding a value to an empty ring is easy: ring->head points to the new
node, and the node’s links point to the node itself.

〈make p ring’s only value 191〉≡
ring->head = p->llink = p->rlink = p;

As suggested in Figure 12.2, Ring_addhi aims q at the first node in the
ring and inserts the new node to its left. This insertion involves initializ-
ing the links of the new node and redirecting q’s llink and q’s predeces-
sor’s rlink:

〈insert p to the left of q 191〉≡
{

p->llink = q->llink;
q->llink->rlink = p;

Figure 12.2 Inserting a new node to the left of head

head
q

phead
q
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p->rlink = q;
q->llink = p;

}

The second through fifth diagrams in the Figure 12.3’s sequence illus-
trate the individual effect of these four statements. At each step, heavy
arcs show the new links. It’s instructive to redraw this sequence when q
points to the only node in the doubly linked list.

Figure 12.3 Inserting a new node to the left of q

p q
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Ring_addlo is almost as easy, but the new node becomes the first
node in the ring. This transformation can be accomplished by calling
Ring_addhi then rotating the ring one value to the right, which is done
by setting head to its predecessor: 

〈functions 188〉+≡
void *Ring_addlo(T ring, void *x) {

assert(ring);
Ring_addhi(ring, x);
ring->head = ring->head->llink;
return x;

}

Ring_add is the most complicated of the three functions that add val-
ues to a ring because it deals with the arbitrary positions described in
the previous section, which include adding values to either end of the
ring. These cases can be handled by letting Ring_addlo and Ring_addhi
deal with additions at the ends, which incidentally takes care of the
empty ring case, and, for the other cases, converts a position to the index
of the value to the right of the position and adds the new node to its left,
as above.

〈functions 188〉+≡
void *Ring_add(T ring, int pos, void *x) {

assert(ring);
assert(pos >= -ring->length && pos<=ring->length+1);
if (pos == 1 || pos == -ring->length)

return Ring_addlo(ring, x);
else if (pos == 0 || pos == ring->length + 1)

return Ring_addhi(ring, x);
else {

struct node *p, *q;
int i = pos < 0 ? pos + ring->length : pos - 1;
〈q ← ith node 189〉
NEW(p);
〈insert p to the left of q 191〉
ring->length++;
return p->value = x;

}
}
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The first two if statements cover positions that specify the ends of the
ring. The initialization of i handles the positions that correspond to the
indices one through ring->length - 1.

The three functions that remove values are easier than those that add
values because there are fewer boundary conditions; the only one is
when the last value in a ring is removed. Ring_remove is the most gen-
eral of the three functions: It finds the ith node and removes it from the
doubly linked list:

〈functions 188〉+≡
void *Ring_remove(T ring, int i) {

void *x;
struct node *q;

assert(ring);
assert(ring->length > 0);
assert(i >= 0 && i < ring->length);
〈q ← ith node 189〉
if (i == 0)

ring->head = ring->head->rlink;
x = q->value;
〈delete node q 194〉
return x;

}

If i is zero, Ring_remove deletes the first node and thus must redirect
head to the new first node.

Adding a node involves four pointer assignments; deleting one re-
quires only two:

〈delete node q 194〉≡
q->llink->rlink = q->rlink;
q->rlink->llink = q->llink;
FREE(q);
if (--ring->length == 0)

ring->head = NULL;

The second and third diagrams in Figure 12.4 illustrate the individual
effect of the two statements at the beginning of this chunk. The affected
links are shown with heavy arcs. The third statement in 〈delete node
q 194〉 frees the node, and the last two statements decrement ring’s
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length and clear its head pointer if its last node was just deleted. Again,
it’s instructive to draw the sequence for deleting a node from one- and
two-node lists.

Ring_remhi is similar, but finding the doomed node is easier:

〈functions 188〉+≡
void *Ring_remhi(T ring) {

void *x;
struct node *q;

assert(ring);
assert(ring->length > 0);
q = ring->head->llink;
x = q->value;
〈delete node q 194〉
return x;

}

As shown above, Ring_addlo is implemented by calling Ring_addhi and
changing ring’s head to point to its predecessor. The symmetric idiom

Figure 12.4 Deleting node q

q
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implements Ring_remlo: Change ring’s head to point to its successor
and call Ring_remhi.

〈functions 188〉+≡
void *Ring_remlo(T ring) {

assert(ring);
assert(ring->length > 0);
ring->head = ring->head->rlink;
return Ring_remhi(ring);

}

The last operation rotates a ring. If n is positive, an N-value ring is
rotated clockwise, which means that the value with index n modulo N
becomes its new head. If n is negative, the ring is rotated counterclock-
wise, which means its head moves to the value with index n + N.

〈functions 188〉+≡
void Ring_rotate(T ring, int n) {

struct node *q;
int i;

assert(ring);
assert(n >= -ring->length && n <= ring->length);
if (n >= 0)

i = n%ring->length;
else

i = n + ring->length;
〈q ← ith node 189〉
ring->head = q;

}

Using 〈q ← ith node 189〉 here ensures that the rotation takes the short-
est route.

Further Reading

Both Knuth (1973a) and Sedgewick (1990) cover the algorithms for mani-
pulating doubly linked lists in detail.

Some of the operations provided in Icon for removing and adding val-
ues to a list are similar to those provided by Ring. Exercise 12.4 explores
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the Icon implementation. The scheme used in Ring_add for specifying
positions is from Icon.

Exercises

12.1 Rewrite the loop in Ring_free to eliminate the variable n; use the
list structure to determine when the loop ends.

12.2 Inspect the implementation of Ring_rotate carefully. Explain
why the consequent of the second if statement must be written as
i = n + ring->length.

12.3 The call Ring_get(ring, i) is often followed closely by another
call, such as Ring_get(ring, i + 1). Modify the implementation
so that a ring remembers its most recently accessed index and the
corresponding node, and use this information to avoid the loops
in 〈q ← ith node 189〉 when possible. Don’t forget to update this
information when values are added or removed. Devise a test pro-
gram for which measurements demonstrate the benefits of your
improvement.

12.4 Icon implements lists, which are similar to rings, as doubly linked
lists of arrays that each hold N values. These arrays are used as
circular buffers, like the arrays in the Seq implementation. Finding
the ith value walks down approximately i/N arrays in the ring’s
list and then computes the index into that array for the ith value.
Adding a value either adds it to a vacant slot in an existing array
or adds a new array. Removing a value vacates a slot in an array
and, if it is the last one occupied in that array, removes the array
from the list and deallocates it. This representation is more com-
plicated than the one described in this chapter, but it performs
better for large rings. Reimplement rings using this representa-
tion, and measure the performance of both implementations. How
big must rings become before the improvement can be detected?
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BIT VECTORS

he sets described in Chapter 9 can hold arbitrary elements
because the elements are manipulated only by functions supplied
by clients. Sets of integers are less flexible, but they’re used often

enough to warrant a separate ADT. The Bit interface exports functions
that manipulate bit vectors, which can be used to represent sets of inte-
gers from zero to N−1. For example, 256-bit vectors can be used to repre-
sent sets of characters efficiently.

Bit provides most of the set-manipulation functions provided by Set,
and also a few functions that are specific to bit vectors. Unlike the sets
provided by Set, the sets represented by bit vectors have a well-defined
universe, which is the set of integers in the range zero to N−1. Thus, Bit
can provide functions that Set cannot, such as the complement of a set.

13.1 Interface

The name “bit vector” reveals that the representation for sets of integers
is essentially a sequence of bits. Nevertheless, the Bit interface exports
only an opaque type that represents a bit vector:

〈bit.h〉≡
#ifndef BIT_INCLUDED
#define BIT_INCLUDED

#define T Bit_T
typedef struct T *T;

T
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〈exported functions 200〉

#undef T
#endif

The length of a bit vector is fixed when the vector is created by Bit_new:

〈exported functions 200〉≡
extern T   Bit_new   (int length);
extern int Bit_length(T set);
extern int Bit_count (T set);

Bit_new creates a new vector of length bits and sets all the bits to zero.
The vector represents the integers zero through length−1, inclusive. It is
a checked runtime error for length to be negative. Bit_new can raise
Mem_failed. 

Bit_length returns the number of bits in set, and Bit_count
returns the number of ones in set.

It is a checked runtime error to pass a null T to any routine in this
interface, except for Bit_union, Bit_inter, Bit_minus, and Bit_diff.

〈exported functions 200〉+≡
extern void Bit_free(T *set);

frees *set and clears *set. It is a checked runtime error for set or *set
to be null.

Individual elements of a set — bits in its vector — are manipulated by
the functions

〈exported functions 200〉+≡
extern int Bit_get(T set, int n);
extern int Bit_put(T set, int n, int bit);

Bit_get returns bit n and thus tests whether n is in set; that is,
Bit_get returns one if bit n in set is one and zero otherwise.  Bit_put
sets bit n to bit and returns the previous value of that bit. It is a checked
runtime error for n to be negative or to be equal to or greater than the
length of set, or for bit to be other than zero or one.

The functions above manipulate individual bits in a set; the functions
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〈exported functions 200〉+≡
extern void Bit_clear(T set, int lo, int hi);
extern void Bit_set  (T set, int lo, int hi);
extern void Bit_not  (T set, int lo, int hi);

manipulate contiguous sequences of bits in a set — subsets of a set.
Bit_clear clears bits lo through hi inclusive; Bit_set sets bits lo
through hi inclusive, and Bit_not complements bits lo through hi. It is
a checked runtime error for lo to exceed hi, and for lo or hi to be neg-
ative or to be equal to or greater than the length of set.

〈exported functions 200〉+≡
extern int Bit_lt (T s, T t);
extern int Bit_eq (T s, T t);
extern int Bit_leq(T s, T t);

Bit_lt returns one if s ⊂ t and zero otherwise. If s ⊂ t, s is a proper
subset of t. Bit_eq returns one if s = t and zero otherwise. Bit_leq
returns one if s ⊆ t and zero otherwise. For all three functions, it is a
checked runtime error for s and t to have different lengths.

The function

〈exported functions 200〉+≡
extern void Bit_map(T set,
 void apply(int n, int bit, void *cl), void *cl);

calls apply for each bit in set, beginning at bit zero. n is the bit number,
which is between zero and one less than the length of the set, bit is the
value of bit n, and cl is supplied by the client. Unlike the function
passed to Table_map, apply may change set. If the call to apply for bit
n changes bit k where k > n, the change will be seen by a subsequent call
to apply, because Bit_map must process the bits in place. To do other-
wise would require Bit_map to make a copy of the vector before process-
ing its bits.

The following functions implement the four standard set operations,
which are described in Chapter 9. Each function returns a new set whose
value is the result of the operation.

〈exported functions 200〉+≡
extern T Bit_union(T s, T t);
extern T Bit_inter(T s, T t);
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extern T Bit_minus(T s, T t);
extern T Bit_diff (T s, T t);

Bit_union returns the union of s and t, denoted s + t, which is the
inclusive OR of the two bit vectors. Bit_inter returns the intersection of
s and t, s ∗ t, which is the logical AND of the two bit vectors. Bit_minus
returns the difference of s and t, s − t, which is the logical AND of s and
the complement of t. Bit_diff returns the symmetric difference of s
and t, s / t, which is the exclusive OR of the two bit vectors.

These four functions accept null pointers for either s or t, but not for
both, and interpret them as empty sets. Bit_union(s, NULL) thus
returns a copy of s. These functions always return a nonnull T. It is a
checked runtime error for both s and t to be null, and for s and t to
have different lengths. These functions can raise Mem_Failed.

13.2 Implementation

A Bit_T is a pointer to a structure that carries the length of the bit vec-
tor and the vector itself:

〈bit.c〉≡
#include <stdarg.h>
#include <string.h>
#include "assert.h"
#include "bit.h"
#include "mem.h"

#define T Bit_T

struct T {
int length;
unsigned char *bytes;
unsigned long *words;

};

〈macros 203〉
〈static data 207〉
〈static functions 212〉
〈functions 203〉
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The length field gives the number of bits in the vector, and bytes
points to at least  bytes. The bits are accessed by indexing
bytes; bytes[i] refers to the byte holding bits 8•i through 8•i + 7,
where 8•i is the least significant bit in the byte. Notice that this conven-
tion uses only eight bits of each character; on machines where characters
have more than eight bits, the excess bits go unused.

It’s possible to store the bits in an array of, say, unsigned longs, if all
the operations that access individual bits, like Bit_get, use the same
convention for accessing the bits. Bit uses an array of characters to per-
mit table-driven implementations of Bit_count, Bit_set, Bit_clear,
and Bit_not.

Some operations, like Bit_union, manipulate all the bits in parallel.
For these operations, the vectors are accessed BPW bits at a time via
words, where

〈macros 203〉≡
#define BPW (8*sizeof (unsigned long))

words must point to an integral number of unsigned longs; nwords com-
putes the number of unsigned longs needed for a bit vector of length
bits:

〈macros 203〉+≡
#define nwords(len) ((((len) + BPW - 1)&(~(BPW-1)))/BPW)

Bit_new uses nwords when it allocates a new T:

〈functions 203〉≡
T Bit_new(int length) {

T set;

assert(length >= 0);
NEW(set);
if (length > 0)

set->words = CALLOC(nwords(length),
sizeof (unsigned long));

else
set->words = NULL;

set->bytes = (unsigned char *)set->words;
set->length = length;

length 8⁄
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return set;
}

Bit_new may allocate as many as sizeof (unsigned long) − 1 excess
bytes. These excess bytes must be zero in order for the functions below
to work properly.

Bit_free deallocates the set and clears its argument, and
Bit_length returns the length field.

〈functions 203〉+≡
void Bit_free(T *set) {

assert(set && *set);
FREE((*set)->words);
FREE(*set);

}

int Bit_length(T set) {
assert(set);
return set->length;

}

13.2.1 Member Operations

Bit_count returns the number of members in a set — that is, the num-
ber of one bits in the set. It could simply walk through the set and test
every bit, but it’s just as easy to use the two halves of a byte — its two
four-bit “nibbles” — as indices into a table that gives the number of one
bits for each of the 16 possible nibbles:

〈functions 203〉+≡
int Bit_count(T set) {

int length = 0, n;
static char count[] = {

0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4 };

assert(set);
for (n = nbytes(set->length); --n >= 0; ) {

unsigned char c = set->bytes[n];
length += count[c&0xF] + count[c>>4];

}



IMPLEMENTATION 205
return length;
}

〈macros 203〉+≡
#define nbytes(len) ((((len) + 8 - 1)&(~(8-1)))/8)

nbytes computes , and it’s used in operations that sequence
through vectors one bit at a time. Each iteration of the loop counts the
number of bits in byte n of the set by adding to length the sum of the
number of bits in the byte’s two four-bit nibbles. This loop may access
some extraneous bits, but since Bit_new initializes them to zeros, they
can’t corrupt the result.

Bit n is bit number n%8 in byte n/8, where the bit numbers in a byte
start at zero and increase from the right to the left; that is, the least sig-
nificant bit is bit zero and the most significant bit is bit seven. Bit_get
returns the value of bit n by shifting byte n/8 to the right n%8 bits and
returning only the rightmost bit:

〈functions 203〉+≡
int Bit_get(T set, int n) {

assert(set);
assert(0 <= n && n < set->length);
return 〈bit n in set 205〉;

}

〈bit n in set 205〉≡
((set->bytes[n/8]>>(n%8))&1)

Bit_put uses a similar idiom to set bit n: When bit is one, Bit_put
shifts a one left by n%8 bits and ORs that result into byte n/8.

〈functions 203〉+≡
int Bit_put(T set, int n, int bit) {

int prev;

assert(set);
assert(bit == 0 || bit == 1);
assert(0 <= n && n < set->length);
prev = 〈bit n in set 205〉;
if (bit == 1)

set->bytes[n/8] |=   1<<(n%8);

len 8⁄
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else
set->bytes[n/8] &= ~(1<<(n%8));

return prev;
}

As shown, Bit_put clears bit n by forming a mask in which bit n%8 is
zero and all the other bits are one; it then ANDs this mask into byte n/8.

Bit_set, Bit_clear, and Bit_not all use similar techniques to set,
clear, and complement a range of bits in a set, but they’re more compli-
cated because they must cope with ranges that straddle byte boundaries.
For example, if set has 60 bits,

Bit_set(set, 3, 54)

sets bits three through seven in the first byte, all of the bits in bytes one
through five, and bits zero through six in byte six, where byte numbers
start at zero. These three regions appear, right to left, in the three shades
in the following figure.

The four most significant bits of byte seven aren’t used and thus are
always zero. The code for Bit_set reflects these three regions:

〈functions 203〉+≡
void Bit_set(T set, int lo, int hi) {

〈check set, lo, and hi 206〉
if (lo/8 < hi/8) {

〈set the most significant bits in byte lo/8 207〉
〈set all the bits in bytes lo/8+1..hi/8-1 207〉
〈set the least significant bits in byte hi/8 207〉

} else
〈set bits lo%8..hi%8 in byte lo/8 208〉

}

〈check set, lo, and hi 206〉≡
assert(set);

7 6 5 4 3 2 1 0
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assert(0 <= lo && hi < set->length);
assert(lo <= hi);

When lo and hi refer to bits in different bytes, the number of bits that
get set in byte lo/8 depends on lo%8: If lo%8 is zero, all of the bits get
set; if it’s seven, only the most significant bit is set. These and the other
possibilities can be stored in a table of masks indexed by lo%8:

〈static data 207〉≡
unsigned char msbmask[] = {

0xFF, 0xFE, 0xFC, 0xF8,
0xF0, 0xE0, 0xC0, 0x80

};

ORing msbmask[lo%8] into byte lo/8 sets the appropriate bits:

〈set the most significant bits in byte lo/8 207〉≡
set->bytes[lo/8] |= msbmask[lo%8];

In the second region, all of the bits in each byte get set to one:

〈set all the bits in bytes lo/8+1..hi/8-1 207〉≡
{

int i;
for (i = lo/8+1; i < hi/8; i++)

set->bytes[i] = 0xFF;
}

hi%8 determines which bits in the byte hi/8 get set: If hi%8 is zero, only
the least significant bit is set; if it’s seven, all of the bits are set. Again,
hi%8 can be used as an index into a table to select the appropriate mask
to OR into byte hi/8:

〈set the least significant bits in byte hi/8 207〉≡
set->bytes[hi/8] |= lsbmask[hi%8];

〈static data 207〉+≡
unsigned char lsbmask[] = {

0x01, 0x03, 0x07, 0x0F,
0x1F, 0x3F, 0x7F, 0xFF

};
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When lo and hi refer to bits in the same byte, the masks given by
msbmask[lo%8] and lsbmask[hi%8] can be combined to set the appro-
propriate bits. For example,

Bit_set(set, 9, 13)

sets bits one through five in the second byte of set; this can be done by
ORing in the mask 0x3E, which is the AND of msbmask[1] and lsb-
mask[5]. In general, the two masks overlap in just those bits that should
be set, so the code for this case is:

〈set bits lo%8..hi%8 in byte lo/8 208〉≡
set->bytes[lo/8] |= 〈mask for bits lo%8..hi%8 208〉;

〈mask for bits lo%8..hi%8 208〉≡
(msbmask[lo%8]&lsbmask[hi%8])

Bit_clear and Bit_not are similar to Bit_set, and use msbmask and
lsbmask in similar ways. For Bit_clear, msbmask and lsbmask provide
the complements of the masks that are ANDed with bytes lo/8 and hi/8,
respectively:

〈functions 203〉+≡
void Bit_clear(T set, int lo, int hi) {

〈check set, lo, and hi 206〉
if (lo/8 < hi/8) {

int i;
set->bytes[lo/8] &= ~msbmask[lo%8];
for (i = lo/8+1; i < hi/8; i++)

set->bytes[i] = 0;
set->bytes[hi/8] &= ~lsbmask[hi%8];

} else
set->bytes[lo/8] &= ~〈mask for bits lo%8..hi%8 208〉;

}

Bit_not must flip bits lo through hi, which it does by using an exclu-
sive OR with masks to cover the appropriate bits:

〈functions 203〉+≡
void Bit_not(T set, int lo, int hi) {

〈check set, lo, and hi 206〉
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if (lo/8 < hi/8) {
int i;
set->bytes[lo/8] ^= msbmask[lo%8];
for (i = lo/8+1; i < hi/8; i++)

set->bytes[i] ^= 0xFF;
set->bytes[hi/8] ^= lsbmask[hi%8];

} else
set->bytes[lo/8] ^= 〈mask for bits lo%8..hi%8 208〉;

}

Bit_map calls apply for every bit in a set. It passes the bit number, its
value, and a client-supplied pointer.

〈functions 203〉+≡
void Bit_map(T set,

void apply(int n, int bit, void *cl), void *cl) {
int n;

assert(set);
for (n = 0; n < set->length; n++)

apply(n, 〈bit n in set 205〉, cl);
}

As shown, Bit_map delivers the bits using the same numbering that is
implicit in Bit_get and the other Bit functions that take bit numbers as
arguments. The value of n/8 changes only every eight bytes, so it’s
tempting to copy each byte from set->bytes[n/8] to a temporary vari-
able, then dole out each bit by shifting it and masking. But this improve-
ment violates the interface, which stipulates that if apply changes a bit
that it hasn’t yet seen, it will see the new value in a subsequent call.

13.2.2 Comparisons

Bit_eq compares sets s and t and returns one if they’re equal and zero
if they’re not. This can be done by comparing the corresponding
unsigned longs in s and t, and the loop can quit as soon as it’s known
that s ≠ t:

〈functions 203〉+≡
int Bit_eq(T s, T t) {

int i;
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assert(s && t);
assert(s->length == t->length);
for (i = nwords(s->length); --i >= 0; )

if (s->words[i] != t->words[i])
return 0;

return 1;
}

Bit_leq compares sets s and t and determines whether s is equal to
t or a proper subset of t. s ⊆ t if, for every bit in s, the corresponding
bit in t is one. In terms of sets, s ⊆ t if the intersection of s and the
complement of t is empty. Thus, s ⊆ t if s&~t is equal to zero; this rela-
tionship holds for each unsigned long in s and t, too. If, for all i,
s->u.words[i] ⊆ t->u.words[i], then s ⊆ t. Bit_leq uses this prop-
erty to stop comparing as soon as the outcome is known:

〈functions 203〉+≡
int Bit_leq(T s, T t) {

int i;

assert(s && t);
assert(s->length == t->length);
for (i = nwords(s->length); --i >= 0; )

if ((s->words[i]&~t->words[i]) != 0)
return 0;

return 1;
}

Bit_lt returns one if s is a proper subset of t; s ⊂ t if s ⊆ t and s ≠ t,
which can be done by ensuring that s->u.words[i]&~t->u.words[i] is
equal to zero and that at least one of s->u.words[i] is not equal to the
corresponding t->u.words[i]:

〈functions 203〉+≡
int Bit_lt(T s, T t) {

int i, lt = 0;

assert(s && t);
assert(s->length == t->length);
for (i = nwords(s->length); --i >= 0; )

if ((s->words[i]&~t->words[i]) != 0)
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return 0;
else if (s->words[i] != t->words[i])

lt |= 1;
return lt;

}

13.2.3 Set Operations

The functions that implement the set operations s + t, s ∗ t, s − t, and
s / t can manipulate their operands one long integer at a time, because
their functions are independent of bit numbers. These functions also
interpret a null T as an empty set, but one of s or t must be nonnull in
order to determine the length of the result. These functions have similar
implementations, but three differences: in the result when s and t refer
to the same set, in they handle null arguments, and in how they form the
result for two nonempty sets. The similarities are captured by the setop
macro:

〈macros 203〉+≡
#define setop(sequal, snull, tnull, op) \

if (s == t) { assert(s); return sequal; } \
else if (s == NULL) { assert(t); return snull; } \
else if (t == NULL) return tnull; \
else { \

int i; T set; \
assert(s->length == t->length); \
set = Bit_new(s->length); \
for (i = nwords(s->length); --i >= 0; ) \

set->words[i] = s->words[i] op t->words[i]; \
return set; }

Bit_union typifies these functions:

〈functions 203〉+≡
T Bit_union(T s, T t) {

setop(copy(t), copy(t), copy(s), |)
}

If s and t refer to the same set, the result is a copy of the set. If either s
or t is null, the result is a copy of the other set, which must be nonnull.
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Otherwise, the result is a set whose unsigned longs are the bitwise OR of
the unsigned longs in s and t.

The private function copy duplicates its argument set by allocating a
new set of the same length and copying the bits from its argument:

〈static functions 212〉≡
static T copy(T t) {

T set;

assert(t);
set = Bit_new(t->length);
if (t->length > 0)

memcpy(set->bytes, t->bytes, nbytes(t->length));
return set;

}

Bit_inter returns an empty set if either of its arguments is null; oth-
erwise, it returns a set that is the bitwise AND of its operands:

〈functions 203〉+≡
T Bit_inter(T s, T t) {

setop(copy(t),
Bit_new(t->length), Bit_new(s->length), &)

}

If s is null, s − t is the empty set, but if t is null, s − t is equal to s. If
both s and t are nonnull, s − t is the bitwise AND of s and the comple-
ment of t. When s and t are the same Bit_T, s − t is the empty set.

〈functions 203〉+≡
T Bit_minus(T s, T t) {

setop(Bit_new(s->length),
Bit_new(t->length), copy(s), & ~)

}

setop’s third argument, &  ~, causes the body of the loop to be

set->words[i] = s->words[i] & ~t->words[i];

Bit_diff implements symmetric difference, s / t, which is the bitwise
exclusive OR of s and t. When s is null, s / t is equal to t and vice versa.
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〈functions 203〉+≡
T Bit_diff(T s, T t) {

setop(Bit_new(s->length), copy(t), copy(s), ^)
}

As shown, s / t is the empty set when s and t refer to the same Bit_T.

Further Reading

Briggs and Torczon (1993) describe a set representation that’s designed
specifically for large, sparse sets and that can initialize those sets in con-
stant time. Gimpel (1974) introduced the spatially multiplexed sets
described in Exercise 13.5.

Exercises

13.1 In sparse sets, most of the bits are zero. Revise the implementa-
tion of Bit so that it saves space for sparse sets by, for example,
not storing long runs of zeros.

13.2 Design an interface that supports the sparse sets described by
Briggs and Torczon (1993), and implement your interface.

13.3 Bit_set uses the loop

for (i = lo/8+1; i < hi/8; i++)
set->bytes[i] = 0xFF;

to set all of the bits from bytes lo/8+1 to hi/8. Bit_clear and
Bit_not have similar loops. Revise these loops to clear, set, and
complement unsigned longs instead of bytes, when possible. Be
careful about alignment constraints. Can you find an application
where this change yields a measurable improvement in execution
time?

13.4 Suppose the Bit functions kept track of the number of one bits in
a set. What Bit functions could be simplified or improved? Imple-
ment this scheme and devise a test program that quantifies the
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possible speed-up. Characterize under what conditions the benefit
is worth the cost.

13.5 In a spatially multiplexed set, the bits are stored one word apart.
On a computer with 32-bit ints, an array of N unsigned ints can
hold 32 N-bit sets. Each one-bit column of the array is one set. A
32-bit mask with only bit i set identifies the set in column i. An
advantage of this representation is that some operations can be
done in constant time by manipulating only these masks. The
union of two sets, for example, is a set whose mask is the union of
the operands’ masks. Many N-bit sets can share an N-word array;
allocating a new set allocates one of the free columns in the array,
or allocates a new array if there are no free columns. This prop-
erty can save space, but it complicates storage management con-
siderably, because the implementation must keep track of the N-
word arrays that have free columns for any value of N. Reimple-
ment Bit using this representation; if you’re forced to change the
interface, design a new one.
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FORMATTING

he standard C library functions printf, fprintf, and vprintf
format data for output, and sprintf and vsprintf format data
into strings. These functions are called with a format string and a

list of arguments whose values are to be formatted. Formatting is con-
trolled by conversion specifiers of the form %c embedded in the format
string; the ith occurrence of %c describes how to format the ith argument
in the list of arguments that follow the format string. The other charac-
ters are copied verbatim. For example, if name is the string Array and
count is 8,

sprintf(buf, "The %s interface has %d functions\n",
name, count)

fills buf with the string "The Array interface has 8 functions\n",
where \n denotes a new-line character, as usual. The conversion specifi-
ers can also include width, precision, and padding specifications. For
example, using %06d instead of %d in the format string above would fill
buf with "The Array interface has 000008 functions\n".

While undoubtedly useful, these functions have at least four short-
comings. First, the set of conversion specifiers is fixed; there’s no way to
provide client-specific codes. Second, the formatted result can be printed
or stored only in a string; there’s no way to specify a client-specific out-
put routine. The third and most dangerous shortcoming is that sprintf
and vsprintf can attempt to store more characters in the output string
than it can hold; there’s no way to specify the size of the output string.
Finally, there is no type-checking for the arguments passed in the vari-

T
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able part of the argument list. The Fmt interface fixes the first three of
these shortcomings.

14.1 Interface

The Fmt interface exports 11 functions, one type, one variable, and one
exception:

〈fmt.h〉≡
#ifndef FMT_INCLUDED
#define FMT_INCLUDED
#include <stdarg.h>
#include <stdio.h>
#include "except.h"

#define T Fmt_T
typedef void (*T)(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[256], int width, int precision);

extern char *Fmt_flags;
extern const Except_T Fmt_Overflow;

〈exported functions 216〉

#undef T
#endif

Technically, Fmt isn’t an abstract data type, but it does export a type,
Fmt_T, that defines the type of the format conversion functions associ-
ated with each formatting code, as detailed below.

14.1.1 Formatting Functions

The two primary formatting functions are:

〈exported functions 216〉≡
extern void Fmt_fmt (int put(int c, void *cl), void *cl,

const char *fmt, ...);
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extern void Fmt_vfmt(int put(int c, void *cl), void *cl,
const char *fmt, va_list ap);

Fmt_fmt formats its fourth and subsequent arguments according to the
format string given by its third argument, fmt, and calls put(c, cl) to
emit each formatted character c; c is treated as an unsigned char, so the
value passed to put is always positive. Fmt_vfmt formats the arguments
pointed to by ap according to the format string given by fmt just as it
does for Fmt_fmt, described below.

The argument cl may point to client-supplied data, and is simply
passed along uninterpreted to the client’s put function. The put func-
tion returns an integer, usually its argument. The Fmt functions don’t
use this capability, but this design permits the standard I/O function
fputc to be used as a put function on some machines when a FILE* is
passed as cl. For example,

Fmt_fmt((int (*)(int, void *))fputc, stdout,
"The %s interface has %d functions\n", name, count)

prints

The Array interface has 8 functions

on the standard output when name is Array and count is 8. The cast is
necessary because fputc has type int (*)(int, FILE*) and put has
type int (*)(int, void *). This usage is correct only where a FILE
pointer has the same representation as a void pointer.

The syntax diagram shown in Figure 14.1 defines the syntax of conver-
sion specifiers. The characters in a conversion specifier define a path
through this diagram, and valid specifiers traverse a path from start to
finish. A specifier begins with a % and is followed by optional flag charac-
ters, whose interpretation depends on the format code; an optional field
width, period, and precision; and concludes with a single-character for-
mat code, denoted by C in Figure 14.1. The valid flag characters are those
that appear in the string pointed to by Fmt_flags; they usually specify
justification, padding, and truncation. It is a checked runtime error for a
flag character to appear more than 255 times in one specifier. If an aster-
isk appears for the field width or precision, the next argument is
assumed to be an integer and is used for the width or precision.  Thus,
one specifier can consume zero or more arguments, depending on the
appearance of asterisks and on the specific conversion function associ-
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ated with the format code. It is a checked runtime error for a width or
precision to specify a value equal to INT_MIN, the most negative integer.

The precise interpretations of the flags, width, and precision depend
on the conversion functions associated with the conversion specifiers.
The functions calls are those registered at the time of the call to
Fmt_fmt.

The default conversion specifiers and their associated conversion
functions are a subset of those for printf and related functions in the
standard I/O library. The initial value of Fmt_flags points to the string
"-+ 0", whose characters are thus the valid flag characters. A - causes
the converted string to be left-justified in the given field width; other-
wise, it’s right-justified. A + causes the result of a signed conversion to
start with a - or + sign. A space causes the result of a signed conversion
to begin with a space if it’s positive. A 0 causes a numeric conversion to
be padded to the field width with leading zeros; otherwise blanks are
used. A negative width is treated as a - flag plus the corresponding posi-
tive width. A negative precision is treated as if no precision were given.

The default conversion specifiers are summarized in Table 14.1. These
are a subset of those defined in the standard C library.

The functions

〈exported functions 216〉+≡
extern void Fmt_print (const char *fmt, ...);
extern void Fmt_fprint(FILE *stream,

const char *fmt, ...);

Figure 14.1 Conversion-specifier syntax

'%'

flags number '.'

number

C

specification:

digit

digit

number:

'*'
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extern int Fmt_sfmt   (char *buf, int size,
const char *fmt, ...);

extern int Fmt_vsfmt(char *buf, int size,
const char *fmt, va_list ap);

are similar to the C library functions printf, fprintf, sprintf, and
vsprintf.

Fmt_fprint formats its third and subsequent arguments according to
the format string given by fmt and writes the formatted output to the
indicated stream. Fmt_print writes its formatted output to the stan-
dard output.

Fmt_sfmt formats its fourth and subsequent arguments according to
the format string given by fmt, and stores the formatted output as a
null-terminated string in buf[0..size-1]. Fmt_vsfmt is similar, but
takes its arguments from the variable length argument-list pointer ap.
Both functions return the number of characters stored into buf, not
counting the terminating null character. Fmt_sfmt and Fmt_vsfmt raise
Fmt_Overflow if they emit more than size characters, including the ter-
minating null character. It is a checked runtime error for size to be non-
positive.

The two functions

〈exported functions 216〉+≡
extern char *Fmt_string (const char *fmt, ...);
extern char *Fmt_vstring(const char *fmt, va_list ap);

are like Fmt_sfmt and Fmt_vsfmt, except that they allocate strings large
enough to hold the formatted results and return these strings. Clients
are responsible for deallocating them. Fmt_string and Fmt_vstring
can raise Mem_Failed.

It is a checked runtime error to pass a null put, buf, or fmt to any of
the formatting functions described above.

14.1.2 Conversion Functions

Each format character C is associated with a conversion function. These
associations can be changed by calling

〈exported functions 216〉+≡
extern T Fmt_register(int code, T cvt);
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Table 14.1 Default conversion specifiers

conversion specifier
argument type

description

c
int

The argument is interpreted as an unsigned character and is
emitted.

d
int

The argument is converted to its signed decimal representa-
tion. The precision, if given, specifies the minimum number of
digits; leading zeros are added, if necessary. The default pre-
cision is one. If both the - and 0 flags appear, or if a precision
is given, the 0 flag is ignored. If both the + and space flags
appear, the space flag is ignored. If the argument and the pre-
cision are zero, there are no characters in the converted
result.

o u x
unsigned

The argument is converted to its unsigned representation in
octal (o), decimal (u), or hexadecimal (x). For x, the letters
abcdef are used for the digits whose values exceed 9. The
flags and precision are interpreted as for d.

f
double

The argument is converted to its decimal representation with
the form x.y. The precision gives the number of digits to the
right of the decimal point; the default is 6. If the precision is
given explicitly as 0, the decimal point is omitted. When a dec-
imal point appears, x has at least one digit. It is a checked
runtime error for the precision to exceed 99. The flags are
interpreted as for d.

e
double

The argument is converted to its decimal representation with
the form x.ye±p. x is always one digit and p is always two
digits. The flags and precision are interpreted as for d.

g
double

The argument is converted to its decimal representation as
for f or e depending on its value. The precision gives the
number of significant digits; the default is one. The result has
the form x.ye±p if p is less than -4 or p is greater than or
equal to the precision; otherwise, the result has the form x.y.
There are no trailing zeros in y, and the decimal point is omit-
ted when y is zero. It is a checked runtime error for the preci-
sion to exceed 99.

p
void *

The argument is converted to the hexadecimal representation
of its value as for u. The flags and precision are interpreted as
for d.

s
char *

Successive characters from the argument are emitted until a
null character is encountered or the number of characters
given by an explicit precision have been emitted. All flags
except - are ignored.
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Fmt_register installs cvt as the conversion function for the format
character given by code, and returns a pointer to the previous function.
Clients may thus override conversion functions temporarily, and then
restore the previous function. It is a checked runtime error for code to
be less than one or more than 255. It is also a checked runtime error for
a format string to use a conversion specifier that has no associated con-
version function.

Many conversion functions are variations on the functions used for
the %d and %s conversion specifiers. Fmt exports two utility functions
used by its internal conversion functions for numerics and strings.

〈exported functions 216〉+≡
extern void Fmt_putd(const char *str, int len,

int put(int c, void *cl), void *cl,
unsigned char flags[256], int width, int precision);

extern void Fmt_puts(const char *str, int len,
int put(int c, void *cl), void *cl,
unsigned char flags[256], int width, int precision);

Fmt_putd assumes that str[0..len-1] holds the string representation
of a signed number, and emits the string according to the conversions
specified by flags, width, and precision as described for %d in Table
14.1. Similarly, Fmt_puts emits str[0..len-1] according to the conver-
sions specified by flags, width, and precision as described for %s. It is
a checked runtime error to pass a null str, a negative len, a null flags,
or a null put to Fmt_putd or Fmt_puts.

Fmt_putd and Fmt_puts are not themselves conversion functions, but
they can be called by conversion functions. They are most useful when
writing client-specific conversion functions, as illustrated below.

 The type Fmt_T defines the signature of a conversion function — the
types of its arguments and its return type. A conversion function is
called with seven arguments. The first two are the format code and a
pointer to the variable-length argument-list pointer that must be used to
access the data to be formatted. The third and fourth arguments are the
client’s output function and associated data. The last three arguments
are the flags, field width, and precision. The flags are given by a charac-
ter array of 256 elements; the ith element is equal to number of times the
flag character i appears in the conversion specifier. width and preci-
sion are equal to INT_MIN when they are not given explicitly.

A conversion function must use expressions like
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va_arg(*app, type)

to fetch the arguments that are to be formatted according to the code
with which the conversion function is associated. type is the expected
type of argument. This expression fetches the argument’s value, then
increments *app so that it points to the next argument. It is an
unchecked runtime error for a conversion function to increment *app
incorrectly.

Fmt’s private conversion function for the code %s illustrates how to
write conversion functions, and how to use Fmt_puts. The specifier %s is
like printf’s %s: Its function emits characters from the string until it
encounters a null character, or until it has emitted the number of charac-
ters given using an optional precision. The - flag or a negative width
specify left-justification. The conversion function uses va_arg to fetch
the argument from the variable length argument list and calls Fmt_puts:

〈conversion functions 222〉≡
static void cvt_s(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision) {
char *str = va_arg(*app, char *);

assert(str);
Fmt_puts(str, strlen(str), put, cl, flags,

width, precision);
}

Fmt_puts interprets flags, width, and precision and emits the string
accordingly:

〈functions 222〉≡
void Fmt_puts(const char *str, int len,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision) {

assert(str);
assert(len >= 0);
assert(flags);
〈normalize width and flags 223〉
if (precision >= 0 && precision < len)

len = precision;
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if (!flags['-'])
pad(width - len, ' ');

〈emit str[0..len-1] 223〉
if ( flags['-'])

pad(width - len, ' ');
}

〈emit str[0..len-1] 223〉≡
{

int i;
for (i = 0; i < len; i++)

put((unsigned char)*str++, cl);
}

The cast to unsigned char ensures that the values passed to put are
always small, positive integers as stipulated in Fmt’s specification.

width and precision are equal to INT_MIN when the width or preci-
sion are omitted. This interface provides the flexibility needed for client-
specific conversion functions to use all combinations of explicit and
omitted widths and precisions, as well as repeated flags. But the default
conversions don’t need this generality; they all treat an omitted width as
an explicit width of zero, a negative width as the - flag along with the
corresponding positive width, a negative precision as an omitted preci-
sion, and repeated occurrences of a flag as one occurrence. If there is an
explicit precision, the 0 flag is ignored, and, as shown above, at most
precision characters from str are emitted.

〈normalize width and flags 223〉≡
〈normalize width 223〉
〈normalize flags 224〉

〈normalize width 223〉≡
if (width == INT_MIN)

width = 0;
if (width < 0) {

flags['-'] = 1;
width = -width;

}
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〈normalize flags 224〉≡
if (precision >= 0)

flags['0'] = 0;

As the calls to pad suggest, width - len spaces must be emitted to
justify the output correctly:

〈macros 224〉≡
#define pad(n,c) do { int nn = (n); \

while (nn-- > 0) \
put((c), cl); } while (0)

pad is a macro because it needs access to put and cl.
The next section describes the implementation of the other default

conversion functions.

14.2 Implementation

The implementation of Fmt consists of the functions defined in the inter-
face, the conversion functions associated with the default conversion
specifiers, and the table that maps conversion specifiers to conversion
functions.

〈fmt.c〉≡
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <float.h>
#include <ctype.h>
#include <math.h>
#include "assert.h"
#include "except.h"
#include "fmt.h"
#include "mem.h"
#define T Fmt_T

〈types 226〉
〈macros 224〉
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〈conversion functions 222〉
〈data 225〉
〈static functions 225〉
〈functions 222〉

〈data 225〉≡
const Except_T Fmt_Overflow = { "Formatting Overflow" };

14.2.1 Formatting Functions

Fmt_vfmt is the heart of the implementation, because all of the other
interface functions call it to do the actual formatting. Fmt_fmt is the
simplest example; it initializes a va_list pointer to the variable part of
its argument list and calls Fmt_vfmt:

〈functions 222〉+≡
void Fmt_fmt(int put(int c, void *), void *cl,

const char *fmt, ...) {
va_list ap;

va_start(ap, fmt);
Fmt_vfmt(put, cl, fmt, ap);
va_end(ap);

}

Fmt_print and Fmt_fprint call Fmt_vfmt with outc as the put func-
tion and with the stream for the standard output or the given stream as
the associated data:

〈static functions 225〉≡
static int outc(int c, void *cl) {

FILE *f = cl;

return putc(c, f);
}

〈functions 222〉+≡
void Fmt_print(const char *fmt, ...) {

va_list ap;
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va_start(ap, fmt);
Fmt_vfmt(outc, stdout, fmt, ap);
va_end(ap);

}

void Fmt_fprint(FILE *stream, const char *fmt, ...) {
va_list ap;

va_start(ap, fmt);
Fmt_vfmt(outc, stream, fmt, ap);
va_end(ap);

}

Fmt_sfmt calls Fmt_vsfmt:

〈functions 222〉+≡
int Fmt_sfmt(char *buf, int size, const char *fmt, ...) {

va_list ap;
int len;

va_start(ap, fmt);
len = Fmt_vsfmt(buf, size, fmt, ap);
va_end(ap);
return len;

}

Fmt_vsfmt calls Fmt_vfmt with a put function and with a pointer to a
structure that keeps track of the string being formatted into buf and of
how many characters it can hold:

〈types 226〉≡
struct buf {

char *buf;
char *bp;
int size;

};

buf and size are copies of Fmt_vsfmt’s similarly named parameters,
and bp points to the location in buf where the next formatted character
is to be stored. Fmt_vsfmt initializes a local instance of this structure
and passes a pointer to it to Fmt_vfmt:
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〈functions 222〉+≡
int Fmt_vsfmt(char *buf, int size, const char *fmt,

va_list ap) {
struct buf cl;

assert(buf);
assert(size > 0);
assert(fmt);
cl.buf = cl.bp = buf;
cl.size = size;
Fmt_vfmt(insert, &cl, fmt, ap);
insert(0, &cl);
return cl.bp - cl.buf - 1;

}

The call to Fmt_vfmt above calls the private function insert with
each character to be emitted and also the pointer Fmt_vsfmt’s local buf
structure. insert checks that there’s room for the character, deposits it
at location given by the bp field, and increments the bp field:

〈static functions 225〉+≡
static int insert(int c, void *cl) {

struct buf *p = cl;

if (p->bp >= p->buf + p->size)
RAISE(Fmt_Overflow);

*p->bp++ = c;
return c;

}

Fmt_string and Fmt_vstring work the same way, except that they
use a different put function. Fmt_string calls Fmt_vstring:

〈functions 222〉+≡
char *Fmt_string(const char *fmt, ...) {

char *str;
va_list ap;

assert(fmt);
va_start(ap, fmt);
str = Fmt_vstring(fmt, ap);
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va_end(ap);
return str;

}

Fmt_vstring initializes a buf structure to a string that can hold 256
characters, and passes a pointer to this structure to Fmt_vfmt:

〈functions 222〉+≡
char *Fmt_vstring(const char *fmt, va_list ap) {

struct buf cl;

assert(fmt);
cl.size = 256;
cl.buf = cl.bp = ALLOC(cl.size);
Fmt_vfmt(append, &cl, fmt, ap);
append(0, &cl);
return RESIZE(cl.buf, cl.bp - cl.buf);

}

append is like Fmt_vsfmt’s put, except that it doubles the size of the
string on the fly, when necessary, to hold the formatted characters.

〈static functions 225〉+≡
static int append(int c, void *cl) {

struct buf *p = cl;

if (p->bp >= p->buf + p->size) {
RESIZE(p->buf, 2*p->size);
p->bp = p->buf + p->size;
p->size *= 2;

}
*p->bp++ = c;
return c;

}

When Fmt_vstring is finished, the string pointed to by the buf field
might be too long, which is why Fmt_vstring calls RESIZE to deallocate
the excess characters.

The buck stops at Fmt_vfmt. It interprets the format string and, for
each formatting specifier, calls the appropriate conversion function. For
the other characters in the format string, it calls the put function:
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〈functions 222〉+≡
void Fmt_vfmt(int put(int c, void *cl), void *cl,

const char *fmt, va_list ap) {
assert(put);
assert(fmt);
while (*fmt)

if (*fmt != '%' || *++fmt == '%')
put((unsigned char)*fmt++, cl);

else
〈format an argument 229〉

}

Most of the work in 〈format an argument 229〉 goes into consuming the
flags, field width, and precision, and into dealing with the possibility that
the conversion specifier doesn’t have a corresponding conversion func-
tion. In the chunk below, width gives the field width, and precision
gives the precision.

〈format an argument 229〉≡
{

unsigned char c, flags[256];
int width = INT_MIN, precision = INT_MIN;
memset(flags, '\0', sizeof flags);
〈get optional flags 230〉
〈get optional field width 231〉
〈get optional precision 232〉
c = *fmt++;
assert(cvt[c]);
(*cvt[c])(c, &ap, put, cl, flags, width, precision);

}

cvt is an array of pointers to conversion functions, and it’s indexed by a
format character. Declaring c to be an unsigned char in the chunk above
is necessary to ensure that *fmt is interpreted as an integer in the range
0 to 255.

cvt is initialized to the conversion functions for the default conver-
sion specifiers, assuming the ASCII collating sequence:

〈data 225〉+≡
static T cvt[256] = {
 /*   0-  7 */ 0,     0, 0,     0,     0,     0,     0,     0,
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 /*   8- 15 */ 0,     0, 0,     0,     0,     0,     0,     0,
 /*  16- 23 */ 0,     0, 0,     0,     0,     0,     0,     0,
 /*  24- 31 */ 0,     0, 0,     0,     0,     0,     0,     0,
 /*  32- 39 */ 0,     0, 0,     0,     0,     0,     0,     0,
 /*  40- 47 */ 0,     0, 0,     0,     0,     0,     0,     0,
 /*  48- 55 */ 0,     0, 0,     0,     0,     0,     0,     0,
 /*  56- 63 */ 0,     0, 0,     0,     0,     0,     0,     0,
 /*  64- 71 */ 0,     0, 0,     0,     0,     0,     0,     0,
 /*  72- 79 */ 0,     0, 0,     0,     0,     0,     0,     0,
 /*  80- 87 */ 0,     0, 0,     0,     0,     0,     0,     0,
 /*  88- 95 */ 0,     0, 0,     0,     0,     0,     0,     0,
 /*  96-103 */ 0,     0, 0, cvt_c, cvt_d, cvt_f, cvt_f, cvt_f,
 /* 104-111 */ 0,     0, 0,     0,     0,     0,     0, cvt_o,
 /* 112-119 */ cvt_p, 0, 0, cvt_s,     0, cvt_u,     0,     0,
 /* 120-127 */ cvt_x, 0, 0,     0,     0,     0,     0,     0
};

Fmt_register installs a new conversion function by storing a pointer
to it in the appropriate element of cvt. It returns the previous value of
that element:

〈functions 222〉+≡
T Fmt_register(int code, T newcvt) {

T old;

assert(0 < code
&& code < (int)(sizeof (cvt)/sizeof (cvt[0])));

old = cvt[code];
cvt[code] = newcvt;
return old;

}

The chunks that scan the conversion specifier follow the syntax shown
in Figure 14.1, incrementing fmt as they go. The first one consumes the
flags:

〈data 225〉+≡
char *Fmt_flags = "-+ 0";

〈get optional flags 230〉≡
if (Fmt_flags) {
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unsigned char c = *fmt;
for ( ; c && strchr(Fmt_flags, c); c = *++fmt) {

assert(flags[c] < 255);
flags[c]++;

}
}

Next comes the field width:

〈get optional field width 231〉≡
if (*fmt == '*' || isdigit(*fmt)) {

int n;
〈n ← next argument or scan digits 231〉
width = n;

}

An asterisk can appear for the width or precision, in which case the next
integer argument provides their values.

〈n ← next argument or scan digits 231〉≡
if (*fmt == '*') {

n = va_arg(ap, int);
assert(n != INT_MIN);
fmt++;

} else
for (n = 0; isdigit(*fmt); fmt++) {

int d = *fmt - '0';
assert(n <= (INT_MAX - d)/10);
n = 10*n + d;

}

As this code suggests, when an argument specifies a width or precision,
it must not specify INT_MIN, which is reserved as the default value.
When a width or precision is given explicitly, it must not exceed
INT_MAX, which is equivalent to the constraint 10•n + d ≤ INT_MAX —
that is, 10•n + d doesn’t overflow. This test must be made without actu-
ally causing overflow, which is why the constraint is rearranged in the
assertion above.

A period announces an approaching optional precision:
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〈get optional precision 232〉≡
if (*fmt == '.' && (*++fmt == '*' || isdigit(*fmt))) {

int n;
〈n ← next argument or scan digits 231〉
precision = n;

}

Notice that a period not followed by an asterisk or a digit is consumed
and is interpreted as an explicitly omitted precision.

14.2.2 Conversion Functions

cvt_s, the conversion function for %s, is shown on page 222. cvt_d is
the conversion function for %d, and it is typical of the functions that for-
mat numbers. It fetches the integer argument, converts it to an unsigned
integer, and generates the appropriate string in a local buffer, most sig-
nificant digit first. It then calls Fmt_putd to emit the string.

〈conversion functions 222〉+≡
static void cvt_d(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision) {
int val = va_arg(*app, int);
unsigned m;
〈declare buf and p, initialize p 233〉

if (val == INT_MIN)
m = INT_MAX + 1U;

else if (val < 0)
m = -val;

else
m = val;

do
*--p = m%10 + '0';

while ((m /= 10) > 0);
if (val < 0)

*--p = '-';
Fmt_putd(p, (buf + sizeof buf) - p, put, cl, flags,

width, precision);
}
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〈declare buf and p, initialize p 233〉≡
char buf[43];
char *p = buf + sizeof buf;

cvt_d does unsigned arithmetic for the same reasons that Atom_int
does; see Section 3.2, which also explains why buf has 43 characters.

〈functions 222〉+≡
void Fmt_putd(const char *str, int len,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision) {
int sign;

assert(str);
assert(len >= 0);
assert(flags);
〈normalize width and flags 223〉
〈compute the sign 233〉
{ 〈emit str justified in width 234〉 }

}

Fmt_putd must emit the string in str as specified by flags, width, and
precision. If a precision is given, it specifies the minimum number of
digits that must appear. That many digits must be emitted, which may
require adding leading zeros. Fmt_putd first determines whether or not
a sign or leading space is needed, then sets sign to that character:

〈compute the sign 233〉≡
if (len > 0 && (*str == '-' || *str == '+')) {

sign = *str++;
len--;

} else if (flags['+'])
sign = '+';

else if (flags[' '])
sign = ' ';

else
sign = 0;

The order of the if statements in 〈compute the sign 233〉 implements the
rule that a + flag takes precedence over a space flag. The length of the
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converted result, n, depends on the precision, the value converted, and
the sign:

〈emit str justified in width 234〉≡
int n;
if (precision < 0)

precision = 1;
if (len < precision)

n = precision;
else if (precision == 0 && len == 1 && str[0] == '0')

n = 0;
else

n = len;
if (sign)

n++;

n is assigned the number of characters that will be emitted, and this code
handles the special case when a value of zero is converted with a preci-
sion of zero, in which case, no characters from the converted result are
emitted.

Fmt_putd can now emit the sign, if the output is to be left-justified; or
it can emit the sign and the padding, if the output is to be right-justified
with leading zeros; or it can emit the padding and the sign, if the output
is to be right-justified with spaces.

〈emit str justified in width 234〉+≡
if (flags['-']) {

〈emit the sign 234〉
} else if (flags['0']) {

〈emit the sign 234〉
pad(width - n, '0');

} else {
pad(width - n, ' ');
〈emit the sign 234〉

}

〈emit the sign 234〉≡
if (sign)

put(sign, cl);
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Fmt_putd can finally emit the converted result, including the leading
zeros, if dictated by the precision, and the padding, if the output is left-
justified:

〈emit str justified in width 234〉+≡
pad(precision - len, '0');
〈emit str[0..len-1] 223〉
if (flags['-'])

pad(width - n, ' ');

cvt_u is simpler than cvt_d, but it can use all of Fmt_putd’s machin-
ery for emitting the converted result. It emits the decimal representation
for the next unsigned integer:

〈conversion functions 222〉+≡
static void cvt_u(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision) {
unsigned m = va_arg(*app, unsigned);
〈declare buf and p, initialize p 233〉

do
*--p = m%10 + '0';

while ((m /= 10) > 0);
Fmt_putd(p, (buf + sizeof buf) - p, put, cl, flags,

width, precision);
}

The octal and hexadecimal conversions are like the unsigned decimal
conversions, except that the output bases are different, which simplifies
the conversions themselves.

〈conversion functions 222〉+≡
static void cvt_o(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision) {
unsigned m = va_arg(*app, unsigned);
〈declare buf and p, initialize p 233〉

do
*--p = (m&0x7) + '0’;
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while ((m >>= 3) != 0);
Fmt_putd(p, (buf + sizeof buf) - p, put, cl, flags,

width, precision);
}

static void cvt_x(int code, va_list *app,
int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision) {
unsigned m = va_arg(*app, unsigned);
〈declare buf and p, initialize p 233〉

〈emit m in hexadecimal 236〉
}

〈emit m in hexadecimal 236〉≡
do

*--p = "0123456789abcdef"[m&0xf];
while ((m >>= 4) != 0);
Fmt_putd(p, (buf + sizeof buf) - p, put, cl, flags,

width, precision);

cvt_p emits a pointer as a hexadecimal number. The precision and all
flags except - are ignored. The argument is interpreted as a pointer, and
it’s converted to an unsigned long in which to do the conversion, because
an unsigned might not be big enough to hold a pointer.

〈conversion functions 222〉+≡
static void cvt_p(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision) {
unsigned long m = (unsigned long)va_arg(*app, void*);
〈declare buf and p, initialize p 233〉

precision = INT_MIN;
〈emit m in hexadecimal 236〉

}

cvt_c is the conversion function associated with %c; it formats a sin-
gle character, left- or right-justified in width characters. It ignores the
precision and the other flags.
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〈conversion functions 222〉+≡
static void cvt_c(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision) {
〈normalize width 223〉
if (!flags['-'])

pad(width - 1, ' ');
put((unsigned char)va_arg(*app, int), cl);
if ( flags['-'])

pad(width - 1, ' ');
}

cvt_c fetches an integer instead of a character because character argu-
ments passed in the variable part of an argument list suffer the default
argument promotions, and are thus converted to and passed as integers.
cvt_c converts the resulting integer to an unsigned char so that signed,
unsigned, and plain characters are all emitted the same way. 

Converting a floating-point value to its decimal representation accu-
rately is surprisingly difficult to do in a machine-independent way.
Machine-dependent algorithms are faster and more accurate, so the con-
version function associated with the e, f, and g conversion specifiers
uses

〈format a double argument into buf 237〉≡
{

static char fmt[] = "%.dd?";
assert(precision <= 99);
fmt[4] = code;
fmt[3] =      precision%10 + '0';
fmt[2] = (precision/10)%10 + '0';
sprintf(buf, fmt, va_arg(*app, double));

}

to convert the absolute value of val into buf; it then emits buf.
The difference between the floating-point conversion specifiers is in

how they format the various parts of a floating-point value. The longest
output comes from the specifier %.99f, which may require
DBL_MAX_10_EXP+1+1+99+1 characters. DBL_MAX_10_EXP and DBL_MAX
are defined in the standard header file float.h. DBL_MAX is the largest
value that can be represented as a double, and DBL_MAX_10_EXP is

; that is, it’s the largest decimal exponent that can be rep-log10DBL_MAX



238 FORMATTING
resented by a double. For 64-bit doubles in IEEE 754 format, DBL_MAX is
 and DBL_MAX_10_EXP is 308. The assignments to fmt[2]

and fmt[3] assume the ASCII collating sequence.
Thus, if DBL_MAX is converted with the conversion specifier %.99f, the

result may have DBL_MAX_10_EXP+1 digits before the decimal point, a
decimal point, 99 digits after the decimal point, and a terminating null
character. Limiting the precision to 99 limits the size of the buffer
needed to hold the converted result, and makes the buffer’s maximum
size known at compile time. The converted results from the other con-
version specifiers, %e and %g, take fewer characters than the result for
%f. cvt_f handles all three codes:

〈conversion functions 222〉+≡
static void cvt_f(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision) {
char buf[DBL_MAX_10_EXP+1+1+99+1];

if (precision < 0)
precision = 6;

if (code == 'g' && precision == 0)
precision = 1;

〈format a double argument into buf 237〉
Fmt_putd(buf, strlen(buf), put, cl, flags,

width, precision);
}

Further Reading

Plauger (1992) describes the implementation of the C library’s printf
family of output functions, including low-level code for converting
strings to floating-point values and vice versa. His code also shows how
to implement the other printf-style formatting flags and codes.

Section 4.8 in Hennessy and Patterson (1994) describes the IEEE 754
floating-point standard and the implementation of floating-point addi-
tion and multiplication. Goldberg (1991) surveys the properties of float-
ing-point arithmetic that most concern programmers.

Floating-point conversions have been implemented many times, but
it’s easy to botch these conversions by making them inaccurate or too
slow. The litmus test for these conversions is if, given a floating-point

1.797693
308×10
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value x, the output conversion produces a string from which the input
conversion recreates a y that is bitwise identical to x. Clinger (1990)
describes how to do the input conversion accurately, and shows that, for
some x, this conversion requires arithmetic of arbitrary precision. Steele
and White (1990) describe how to do an accurate output conversion.

Exercises

14.1 Fmt_vstring uses RESIZE to deallocate the unused portion of the
string that it returns. Devise a way to do this deallocation only
when it pays; that is, when the space deallocated is worth the
effort it takes to deallocate it.

14.2 Use the algorithms described in Steele and White (1990) to imple-
ment the e, f, and g conversions.

14.3 Write a conversion function that takes the conversion specifier
from the next integer argument and associates it with the charac-
ter @. For example,

Fmt_string("The offending value is %@\n",
x.format, x.value);

would format x.value according to the format code carried along
in x.format.

14.4 Write a conversion function for emitting the elements in a Bit_T
as a sequence of integers in which a run of ones is emitted as a
range; for example, 1 32–45 68 70–71.
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LOW-LEVEL STRINGS

is not a string-processing language per se, but it does include
facilities for manipulating arrays of characters, which are com-
monly called strings. By convention, an N-character string is an

array of N+1 characters in which the last character is the null character;
that is, it has the value zero.

The language itself has only two features that help process strings.
Pointers to characters can be used to traverse character arrays, and
string literals can be used to initialize arrays of characters. For example,

char msg[] = "File not found";

is shorthand for

char msg[] = { 'F', 'i', 'l', 'e', ' ', 'n', 'o', 't',
' ', 'f', 'o', 'u', 'n', 'd', '\0' };

Incidentally, character constants, like 'F', are ints, not chars, which
explains why sizeof 'F' is equal to sizeof (int).

String literals can also stand for arrays initialized to the given charac-
ters. For example,

char *msg = "File not found";

is equivalent to

static char t376[] = "File not found";
char *msg = t376;

C
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where t376 is an internal name generated by the compiler.
A string literal can be used anywhere the name of a read-only array

can be used. For example, Fmt’s cvt_x uses a string literal in an
expression:

do
*--p = "0123456789abcdef"[m&0xf];

while ((m >>= 4) != 0);

The assignment is equivalent to the more verbose

{
static char digits[] = "0123456789abcdef";
*p++ = digits[m&0xf];

}

digits is a compiler-generated name.
The C library includes a suite of functions that manipulate null-

terminated strings. These functions, defined in the standard header
string.h, copy, search, scan, compare, and transform strings. strcat is
typical:

char *strcat(char *dst, const char *src)

It appends src to the end of dst; that is, it copies characters up to and
including the null character from src to successive elements in dst
beginning at the element in dst that holds the null character.

strcat illustrates the two drawbacks of the functions defined in
string.h. First, a client must allocate the space for the result, such as
dst in strcat. Second, and most important, all of the functions are
unsafe — none of them can check to see whether the result string is large
enough. If dst isn’t big enough to hold the additional characters from
src, strcat will scribble on unallocated storage or storage used for
something else. Some of the functions, like strncat, take additional
arguments that limit the number of characters copied to their results,
which helps, but allocation errors can still occur.

The functions in the Str interface described in this chapter avoid
these drawbacks and provide a convenient way to manipulate substrings
of their string arguments. These functions are safer than those in
string.h because most of the Str functions allocate the space for their
results. The cost associated with these allocations is the price for safety.
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These allocations are often needed anyway, because clients of the
string.h functions must allocate the results when their sizes depend
on the outcomes of computations. As for the string.h functions, clients
of the Str functions must still deallocate the results. The Text interface
described in the next chapter exports another set of string-manipulation
functions that avoid some of the allocation overhead of the Str
functions.

15.1 Interface

〈str.h〉≡
#ifndef STR_INCLUDED
#define STR_INCLUDED
#include <stdarg.h>

〈exported functions 244〉

#undef T
#endif

All of the string arguments to the functions in the Str interface are
given by a pointer to a null-terminated array of characters and positions.
Like Ring positions, string positions identify locations between charac-
ters including the position after the last nonnull character. Positive posi-
tions specify the location from the left end of a string; position one is the
location to the left of the first character. Nonpositive positions specify
positions from the right end of the string; position zero is the location to
the right of the last character. For example, the following diagram shows
the positions in the string Interface.

I n t e r

1 2 3 4 5 6

–5 –4 –3 –2 –1 0

f a c e

7 8 9 10

–9 –8 –7 –6
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Two positions i and j in the string s specify the substring between
them, denoted by s[i:j]. If s points to the string Interface, s[-4:0]
is the substring face. These positions can be given in either order:
s[0:-4] also specifies face. Substrings can be null; s[3:3] and
s[3:-7] both specify the null substring between the n and t in Inter-
face. s[i:i+1] is always the character to the right of i for any valid
position i, except the rightmost position.

Character indices are another way to specify substrings and may seem
more natural, but they have disadvantages. Order is important when
specifying substrings with indices. For example, the indices in the string
Interface run from zero to nine inclusive. If substrings are specified
with two indices where the substring starts after the first index and ends
before the second one, s[1..6] specifies the substring terf. But this con-
vention must permit the index of the null character in order to specify
the substring face with s[4..9], and it cannot specify the leading null
substring. Changing this convention so that a substring ends after the
second index makes it impossible to specify a null substring. Other con-
ventions that use negative indices could be used, but they’re more cum-
bersome than positions.

Positions are better than character indices because they avoid these
confusing boundary cases. And nonpositive positions can be used to
access the tail of a string without knowing its length.

Str exports functions that create and return null-terminated strings,
and that return information about strings and positions in them. The
functions that create strings are:

〈exported functions 244〉≡
extern char *Str_sub(const char *s, int i, int j);
extern char *Str_dup(const char *s, int i, int j, int n);
extern char *Str_cat(const char *s1, int i1, int j1,

const char *s2, int i2, int j2);
extern char *Str_catv   (const char *s, ...);
extern char *Str_reverse(const char *s, int i, int j);
extern char *Str_map    (const char *s, int i, int j,

const char *from, const char *to);

All of these functions allocate the space for their results, and they all can
raise Mem_Failed. It is a checked runtime error to pass a null string
pointer to any function in this interface, except as detailed below for
Str_catv and Str_map.
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Str_sub returns s[i:j], the substring of s between the positions i
and j. For example, the calls

Str_sub("Interface",  6, 10)
Str_sub("Interface",  6,  0)
Str_sub("Interface", -4, 10)
Str_sub("Interface", -4,  0)

all return face. The positions can be given in either order. It is a checked
runtime error to pass an i and j that do not specify a substring in s to
any function in this interface.

Str_dup returns a string with n copies of s[i:j]. It is a checked runt-
ime error for n to be negative. Str_dup is often used to copy a string; for
example, Str_dup("Interface", 1, 0, 1) returns a copy of Inter-
face. Note the use of the positions 1 and 0 to specify all of Interface.

Str_cat returns the concatentation of s1[i1:j1] and s2[i2:j2];
that is, a string consisting of the characters from s1[i1:j1] followed by
the characters from s2[i2:j2]. Str_catv is similar; it takes zero more
triples that each specify a string and two positions, and returns the con-
catenation of these substrings. The argument list is terminated by a null
pointer. For example,

Str_catv("Interface", -4, 0, " plant", 1, 0, NULL)

returns the string face plant.
Str_reverse returns the string consisting of the characters from

s[i:j] in the opposite order in which they appear in s.
Str_map returns a string consisting of the characters from s[i:j]

mapped according to the values given by from and to. Each character
from s[i:j] that appears in from is mapped to the corresponding char-
acter in to. Characters that do not appear in from are mapped to them-
selves. For example,

Str_map(s, 1, 0, "ABCDEFGHIJKLMNOPQRSTUVWXYZ",
                 "abcdefghijklmnopqrstuvwxyz")

returns a copy of s in which uppercase characters are replaced by their
lowercase equivalents.

If both from and to are null, the mapping specified by the most recent
call to Str_map is used. If s is null, i and j are ignored, from and to are
used only to establish the default mapping, and Str_map returns null.
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The following are checked runtime errors: for only one of the from or
to pointers to be null; for nonnull from and to strings to specify strings
of different lengths; for all of s, from, and to to be null; and for both
from and to be null on the first call to Str_map.

The remaining functions in the Str interface return information about
strings or positions in strings; none allocate space.

〈exported functions 244〉+≡
extern int Str_pos(const char *s, int i);
extern int Str_len(const char *s, int i, int j);
extern int Str_cmp(const char *s1, int i1, int j1,

const char *s2, int i2, int j2);

Str_pos returns the positive position corresponding to s[i:i]. A posi-
tive position can always be converted to an index by subtracting one, so
Str_pos is often used when an index is needed. For example, if s points
to the string Interface,

printf("%s\n", &s[Str_pos(s, -4)-1])

prints face.
Str_len returns the number of characters in s[i:j].
Str_cmp returns a value that is less than zero, equal to zero, or

greater than zero if s1[i1:j1] is lexically less than, equal to, or greater
than s2[i2:j2].

The following functions search strings for characters and other
strings. When the search succeeds, these functions return positive posi-
tions that reflect the result of the search; when the search fails, they
return zero. Functions with names that include _r search from the right
ends of their argument strings; the others search from the left ends.

〈exported functions 244〉+≡
extern int Str_chr  (const char *s, int i, int j, int c);
extern int Str_rchr (const char *s, int i, int j, int c);
extern int Str_upto (const char *s, int i, int j,

const char *set);
extern int Str_rupto(const char *s, int i, int j,

const char *set);
extern int Str_find (const char *s, int i, int j,

const char *str);
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extern int Str_rfind(const char *s, int i, int j,
const char *str);

Str_chr and Str_rchr return the position in s before the leftmost or
rightmost occurrence of the character c in s[i:j], or zero if c doesn’t
appear in s[i:j].

Str_upto and Str_rupto return the position in s before the leftmost
or rightmost occurrence in s[i:j] of any character in set, or zero if
none of the characters in set appear in s[i:j]. It is a checked runtime
error to pass a null set to these functions.

Str_find and Str_rfind return the position in s before the leftmost
or rightmost occurrence of str in s[i:j], or zero if str doesn’t appear
in s[i:j]. It is a checked runtime error to pass a null str to these
functions.

The functions

〈exported functions 244〉+≡
extern int Str_any   (const char *s, int i,

const char *set);
extern int Str_many  (const char *s, int i, int j,

const char *set);
extern int Str_rmany (const char *s, int i, int j,

const char *set);
extern int Str_match (const char *s, int i, int j,

const char *str);
extern int Str_rmatch(const char *s, int i, int j,

const char *str);

step over substrings; they return the positive positions that follow or
precede the matched substrings.

Str_any returns the positive position in s after the character
s[i:i+1] if that character appears in set, or zero if s[i:i+1] doesn’t
appear in set.

Str_many returns the positive position in s after a contiguous
sequence of one or more characters from set at the beginning of
s[i:j], or zero if s[i:j] doesn’t begin with a character from set.
Str_rmany returns the positive position in s before a contiguous
sequence of one of more characters from set at the end of s[i:j], or
zero if s[i:j] doesn’t end with a character from set. It is checked runt-
ime error to pass a null set to Str_any, Str_many, or Str_rmany.
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Str_match returns the positive position in s after the occurrence of
str at the beginning of s[i:j], or zero if s[i:j] doesn’t begin with
str. Str_rmatch returns the positive position in s before the occurrence
of str at the end of s[i:j], or zero if s[i:j] doesn’t end with str. It is
checked runtime error to pass a null str to Str_match or Str_rmatch.

Str_rchr, Str_rupto, and Str_rfind search from the right ends of
their argument strings, but return positions to the left of the characters
or strings they seek. For example, the calls

Str_find ("The rain in Spain", 1, 0, "rain")
Str_rfind("The rain in Spain", 1, 0, "rain")

both return 5, because rain appears only once in their first arguments.
The calls

Str_find ("The rain in Spain", 1, 0, "in")
Str_rfind("The rain in Spain", 1, 0, "in")

return 7 and 16, respectively, because in appears three times.
Str_many and Str_match step right and return the positions after the

characters they step over. Str_rmany and Str_rmatch step left; they
return the positions before the characters. For example,

Str_sub(name, 1, Str_rmany(name, 1, 0, " \t"))

returns a copy of name without its trailing blanks and tabs, if there are
any. The function basename shows another typical use of these conven-
tions. basename accepts a UNIX-style path name and returns the file
name without its leading directories or a specific trailing suffix, as illus-
trated by the following examples.

basename("/usr/jenny/main.c", 1, 0, ".c") main
basename("../src/main.c",     1, 0, "") main.c
basename("main.c",            1, 0, "c") main.
basename("main.c",            1, 0, ".obj") main.c
basename("examples/wfmain.c", 1, 0, "main.c") wf

basename uses Str_rchr to find the rightmost slash and Str_rmatch to
isolate the suffix.
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char *basename(char *path, int i, int j,
const char *suffix) {

i = Str_rchr(path, i, j, '/');
j = Str_rmatch(path, i + 1, 0, suffix);
return Str_dup(path, i + 1, j, 1);

}

The value returned by Str_rchr, which is assigned to i, is the position
before the rightmost slash, if there is one, or zero. In either case, the file
name starts at position i + 1. Str_match examines the file name and
returns the position before the suffix or after the file name. Again, in
either case, j is set to the position after the file name. Str_dup returns
the substring in path between i + 1 and j.

The function

〈exported functions 244〉+≡
extern void Str_fmt(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision);

is a conversion function that can be used with the formatting functions
in the Fmt interface to format substrings. It consumes three arguments
— a string pointer and two positions — and it formats the substring in
the style specified by the Fmt’s %s format. It is a checked runtime error
for the string pointer, app, or flags to be null.

For example, if Str_fmt is associated with the format code S by

Fmt_register('S', Str_fmt)

then

Fmt_print("%10S\n", "Interface", -4, 0)

prints the line ______face, where _ denotes a space.

15.2 Example: Printing Identifiers

A program that prints the C keywords and identifiers in its input illus-
trates the use of the use of Str_fmt, as well as the use of the functions
that examine strings for characters or other strings.
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〈ids.c〉≡
#include <stdlib.h>
#include <stdio.h>
#include "fmt.h"
#include "str.h"

int main(int argc, char *argv[]) {
char line[512];
static char set[] = "0123456789_"

"abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ";

Fmt_register('S', Str_fmt);
while (fgets(line, sizeof line, stdin) != NULL) {

int i = 1, j;
while ((i = Str_upto(line, i, 0, &set[10])) > 0){

j = Str_many(line, i, 0, set);
Fmt_print("%S\n", line, i, j);
i = j;

}
}
return EXIT_SUCCESS;

}

The inner while loop scans line[i:0] for the next identifier, beginning
with i equal to one. Str_upto returns the position in line of the next
underscore or letter in line[i:0], and that position is assigned to i.
Str_many returns the position after a run of digits, underscores, and let-
ters. Thus, i and j identify the next identifier, and Fmt_print prints it
with Str_fmt, which is associated with the format code S. Assigning j to
i causes the next iteration of the while loop to look for the next identi-
fier. When line holds the declaration for main above, the values of i and
j passed to Fmt_print are as shown below.

i

j

( , * []) {int

1

4

main

5

9

int

10

13

argc

14

18

char

20

24

argv

26

30
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There are no allocations in this program. Using positions often avoids
allocations in these kinds of applications.

15.3 Implementation

〈str.c〉≡
#include <string.h>
#include <limits.h>
#include "assert.h"
#include "fmt.h"
#include "str.h"
#include "mem.h"

〈macros 251〉
〈functions 252〉

The implementation must deal with converting positions to indices
and vice versa, because the functions use indices to access the actual
characters. The index of the character to the right of the positive posi-
tion i is i − 1. The index of the character to the right of a negative posi-
tion i is i + len, where len is the number of characters in the string. The
macro

〈macros 251〉≡
#define idx(i, len) ((i) <= 0 ? (i) + (len) : (i) - 1)

encapsulates these definitions; given a position i in a string of length
len, idx(i, len) is the index of the character to the right of i.

The Str functions convert their position arguments to indices, and
then use these indices to access the string. The convert macro encapsu-
lates the steps in this conversion:

〈macros 251〉+≡
#define convert(s, i, j) do { int len; \

assert(s); len = strlen(s); \
i = idx(i, len); j = idx(j, len); \
if (i > j) { int t = i; i = j; j = t; } \
assert(i >= 0 && j <= len); } while (0)



252 LOW-LEVEL STRINGS
The positions i and j are converted to indices in the range zero to the
length of s, and they’re swapped, if necessary, so that i never exceeds j.
The concluding assertion enforces the checked runtime error that i and
j specify valid positions in s. Once converted, j − i is the length of the
specified substring.

Str_sub illustrates the typical use of convert.

〈functions 252〉≡
char *Str_sub(const char *s, int i, int j) {

char *str, *p;

convert(s, i, j);
p = str = ALLOC(j - i + 1);
while (i < j)

*p++ = s[i++];
*p = '\0';
return str;

}

The position that specifies the end of the substring is converted to the
index of the character that follows the substring, which might be the ter-
minating null character. Thus, j − i is the length of the desired sub-
string, which, counting the null character, needs j − i + 1 bytes of
storage.

Str_sub and some of the other Str functions can be written using the
string routines in the standard C library, like strncpy; see Exercise 15.2.

15.3.1 String Operations

Str_dup allocates space for n copies of s[i:j] plus a terminating null
character, and then copies s[i:j] n times, provided s[i:j] is non-
empty.

〈functions 252〉+≡
char *Str_dup(const char *s, int i, int j, int n) {

int k;
char *str, *p;

assert(n >= 0);
convert(s, i, j);
p = str = ALLOC(n*(j - i) + 1);
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if (j - i > 0)
while (n-- > 0)

for (k = i; k < j; k++)
*p++ = s[k];

*p = '\0';
return str;

}

Str_reverse is like Str_sub, except that it copies the characters
backward:

〈functions 252〉+≡
char *Str_reverse(const char *s, int i, int j) {

char *str, *p;

convert(s, i, j);
p = str = ALLOC(j - i + 1);
while (j > i)

*p++ = s[--j];
*p = '\0';
return str;

}

Str_cat could just call Str_catv, but it’s used enough to warrant its
own tailor-made implementation:

〈functions 252〉+≡
char *Str_cat(const char *s1, int i1, int j1,
              const char *s2, int i2, int j2) {

char *str, *p;

convert(s1, i1, j1);
convert(s2, i2, j2);
p = str = ALLOC(j1 - i1 + j2 - i2 + 1);
while (i1 < j1)

*p++ = s1[i1++];
while (i2 < j2)

*p++ = s2[i2++];
*p = '\0';
return str;

}
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Str_catv is a bit more complicated, because it must make two passes
over its variable number of arguments:

〈functions 252〉+≡
char *Str_catv(const char *s, ...) {

char *str, *p;
const char *save = s;
int i, j, len = 0;
va_list ap;

va_start(ap, s);
〈len ← the length of the result 254〉
va_end(ap);
p = str = ALLOC(len + 1);
s = save;
va_start(ap, s);
〈copy each s[i:j] to p, increment p 255〉
va_end(ap);
*p = '\0';
return str;

}

The first pass computes the length of the result by summing the lengths
of the argument substrings. After the space for the result is allocated,
the second pass appends the substring given by each triple to the result.
The first pass computes the length of each substring by converting the
positions to indices, which give the length:

〈len ← the length of the result 254〉≡
while (s) {

i = va_arg(ap, int);
j = va_arg(ap, int);
convert(s, i, j);
len += j - i;
s = va_arg(ap, const char *);

}

The second pass is almost identical: The only difference is that the
assignment to len is replaced with a loop that copies the substring:
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〈copy each s[i:j] to p, increment p 255〉≡
while (s) {

i = va_arg(ap, int);
j = va_arg(ap, int);
convert(s, i, j);
while (i < j)

*p++ = s[i++];
s = va_arg(ap, const char *);

}

Str_map builds an array map in which map[c] is the mapping for c as
specified by from and to. The characters in s[i:j] are mapped and cop-
ied into a new string by using them as indices into map:

〈map s[i:j] into a new string 255〉≡
char *str, *p;
convert(s, i, j);
p = str = ALLOC(j - i + 1);
while (i < j)

*p++ = map[(unsigned char)s[i++]];
*p = '\0';

The cast prevents characters whose values exceed 127 from being sign-
extended to negative indices.

map is built by initializing it so that map[c] is equal to c; that is, each
character is mapped to itself. Then the characters in from are used to
index the elements in map to which the corresponding characters in to
are assigned:

〈rebuild map 255〉≡
unsigned c;
for (c = 0; c < sizeof map; c++)

map[c] = c;
while (*from && *to)

map[(unsigned char)*from++] = *to++;
assert(*from == 0 && *to == 0);

The assertion above implements the checked runtime error that the
lengths of from and to must be equal.

Str_map uses this chunk when both from and to are nonnull, and it
uses 〈map s[i:j] into a new string 255〉 when s is nonnull:
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〈functions 252〉+≡
char *Str_map(const char *s, int i, int j,

const char *from, const char *to) {
static char map[256] = { 0 };

if (from && to) {
〈rebuild map 255〉

} else {
assert(from == NULL && to == NULL && s);
assert(map['a']);

}
if (s) {

〈map s[i:j] into a new string 255〉
return str;

} else
return NULL;

}

Initially, all of the elements of map are zero. There’s no way to specify a
null character in to, so the assertion that map['a'] is nonzero imple-
ments the checked runtime error that the first call to Str_map must not
have null from and to pointers.

The positive position to the left of the character with index i is i + 1.
Str_pos uses this property to return the positive position corresponding
to the arbitrary position i in s. It converts i to an index, validates it, and
converts it back to a positive position, which it returns.

〈functions 252〉+≡
int Str_pos(const char *s, int i) {

int len;

assert(s);
len = strlen(s);
i = idx(i, len);
assert(i >= 0 && i <= len);
return i + 1;

}

Str_len returns the length of the substring s[i:j] by converting
i and j to indices and returning the number of characters between them:
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〈functions 252〉+≡
int Str_len(const char *s, int i, int j) {

convert(s, i, j);
return j - i;

}

The implementation of Str_cmp is straightforward but tedious,
because it involves some bookkeeping:

〈functions 252〉+≡
int Str_cmp(const char *s1, int i1, int j1,

const char *s2, int i2, int j2) {
〈string compare 257〉

}

Str_cmp starts by converting i1 and j1 to indices in s1, and i2 and j2
to indices in s2:

〈string compare 257〉≡
convert(s1, i1, j1);
convert(s2, i2, j2);

Next, s1 and s2 are adjusted so that each points directly to its first
character.

〈string compare 257〉+≡
s1 += i1;
s2 += i2;

The shorter of s1[i1:j1] and s2[i2:j2] determines the how many
characters will be compared, which is done by calling strncmp.

〈string compare 257〉+≡
if (j1 - i1 < j2 - i2) {

int cond = strncmp(s1, s2, j1 - i1);
return cond == 0 ? -1 : cond;

} else if (j1 - i1 > j2 - i2) {
int cond = strncmp(s1, s2, j2 - i2);
return cond == 0 ? +1 : cond;

} else
return strncmp(s1, s2, j1 - i1);
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When s1[i1:j1] is shorter than s2[i2:j2] and memcmp returns zero,
s1[i1:j1] is equal to a prefix of s2[i2:j2] and is thus less than
s2[i2:j2]. The second if statement handles the opposite case, and the
else clause applies when the lengths of the arguments are equal.

The standard stipulates that strncmp (and memcmp) must treat the
characters in s1 and s2 as unsigned characters, which gives a well-
defined result when character values greater than 127 appear in s1 or
s2. For example, strncmp("\344", "\127", 1) must return a positive
value, but some implementations of strncmp incorrectly compare
“plain” characters, which may be signed or unsigned. For these imple-
mentations, strncmp("\344", "\127", 1) may return a negative value.
Some implementations of memcmp produce the same error.

15.3.2 Analyzing Strings

The remaining functions inspect substrings from the left to the right or
vice versa for occurrences of characters or other strings. They all return
a positive position if the search succeeds, and zero otherwise. Str_chr
is typical:

〈functions 252〉+≡
int Str_chr(const char *s, int i, int j, int c) {

convert(s, i, j);
for ( ; i < j; i++)

if (s[i] == c)
return i + 1;

return 0;
}

Str_rchr is similar, but starts its search from the right end of s[i:j]:

〈functions 252〉+≡
int Str_rchr(const char *s, int i, int j, int c) {

convert(s, i, j);
while (j > i)

if (s[--j] == c)
return j + 1;

return 0;
}
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Both functions return the positive position to the left of the occurrence
of c, when c appears in s[i:j].

Str_upto and Str_rupto are similar to Str_chr and Str_rchr,
except that they look for an occurrence in s[i:j] of any one of the char-
acters in a set:

〈functions 252〉+≡
int Str_upto(const char *s, int i, int j,

const char *set) {
assert(set);
convert(s, i, j);
for ( ; i < j; i++)

if (strchr(set, s[i]))
return i + 1;

return 0;
}

int Str_rupto(const char *s, int i, int j,
const char *set) {
assert(set);
convert(s, i, j);
while (j > i)

if (strchr(set, s[--j]))
return j + 1;

return 0;
}

Str_find searches for the occurrence of a string in s[i:j]. Its imple-
mentation treats search strings of length zero or one as special cases.

〈functions 252〉+≡
int Str_find(const char *s, int i, int j,

const char *str) {
int len;

convert(s, i, j);
assert(str);
len = strlen(str);
if (len == 0)

return i + 1;
else if (len == 1) {
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for ( ; i < j; i++)
if (s[i] == *str)

return i + 1;
} else

for ( ; i + len <= j; i++)
if (〈s[i...] ≡ str[0..len-1] 260〉)

return i + 1;
return 0;

}

If str has no characters, the search always succeeds. If str has only one
character, Str_find is equivalent to Str_chr. In the general case,
Str_find looks for str in s[i:j], but it must be careful not to accept a
match that extends past the end of the substring:

〈s[i...] ≡ str[0..len-1] 260〉≡
(strncmp(&s[i], str, len) == 0)

Str_rfind has the same three cases, but must cope with comparing
strings backward.

〈functions 252〉+≡
int Str_rfind(const char *s, int i, int j,

const char *str) {
int len;

convert(s, i, j);
assert(str);
len = strlen(str);
if (len == 0)

return j + 1;
else if (len == 1) {

while (j > i)
if (s[--j] == *str)

return j + 1;
} else

for ( ; j - len >= i; j--)
if (strncmp(&s[j-len], str, len) == 0)

return j - len + 1;
return 0;

}
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Str_rfind must be careful not to accept a match that extends past the
beginning of the substring.

Str_any and its cousins don’t search for characters or strings; they
simply step over them if they appear at the beginning or end of the sub-
string in question. Str_any returns Str_pos(s,i) + 1 if s[i:i+1] is a
character in set:

〈functions 252〉+≡
int Str_any(const char *s, int i, const char *set) {

int len;

assert(s);
assert(set);
len = strlen(s);
i = idx(i, len);
assert(i >= 0 && i <= len);
if (i < len && strchr(set, s[i]))

return i + 2;
return 0;

}

If the test succeeds, the index i + 1 is converted to a positive position by
adding one, which explains why Str_any returns i + 2.

Str_many steps over a run of one or more characters in set that occur
at the beginning of s[i:j]:

〈functions 252〉+≡
int Str_many(const char *s, int i, int j,

const char *set) {
assert(set);
convert(s, i, j);
if (i < j && strchr(set, s[i])) {

do
i++;

while (i < j && strchr(set, s[i]));
return i + 1;

}
return 0;

}
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Str_rmany backs up over a run of one or more characters in set that
occur at the end of s[i:j]:

〈functions 252〉+≡
int Str_rmany(const char *s, int i, int j,

const char *set) {
assert(set);
convert(s, i, j);
if (j > i && strchr(set, s[j-1])) {

do
--j;

while (j >= i && strchr(set, s[j]));
return j + 2;

}
return 0;

}

When the do-while loop terminates, j is equal to i − 1 or is the index of a
character that is not in set. In the first case, Set_rmany must return
i + 1; in the second case, it must return the position to the right of the
character s[j]. The value j + 2 is the correct one in both cases.

Str_match returns Str_pos(s,i) + strlen(str) if str occurs at the
beginning of s[i:j]. Like Str_find, search strings with lengths zero or
one get special treatment:

〈functions 252〉+≡
int Str_match(const char *s, int i, int j,

const char *str) {
int len;

convert(s, i, j);
assert(str);
len = strlen(str);
if (len == 0)

return i + 1; 
else if (len == 1) {

if (i < j && s[i] == *str)
return i + 2;

} else if (i + len <= j && 〈s[i...] ≡ str[0..len-1] 260〉)
return i + len + 1;
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return 0;
}

The general case must be careful not to consider a match that extends
past the end of s[i:j].

Similar situations occur in Str_rmatch, which must avoid a match
that extends past the beginning of s[i:j], and which can treat search
strings with lengths zero or one as special cases.

〈functions 252〉+≡
int Str_rmatch(const char *s, int i, int j,

const char *str) {
int len;

convert(s, i, j);
assert(str);
len = strlen(str);
if (len == 0)

return j + 1;
else if (len == 1) {

if (j > i && s[j-1] == *str)
return j;

} else if (j - len >= i
&& strncmp(&s[j-len], str, len) == 0)

return j - len + 1;
return 0;

}

15.3.3 Conversion Functions

The last function is Str_fmt, which is a conversion function as specified
in the Fmt interface. The calling sequence for conversion functions is
described on page 221. The flags, width, and precision arguments
dictate how the string is to be formatted.

The important feature of Str_fmt is that it consumes three arguments
from the variable part of the argument list passed to one of the Fmt func-
tions. These three arguments specify the string and two positions within
that string. These positions give the length of the substring, which, along
with flags, width, and precision, determine how the substring is emit-
ted. Str_fmt lets Fmt_puts interpret these values and emit the string:
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〈functions 252〉+≡
void Str_fmt(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision) {
char *s;
int i, j;

assert(app && flags);
s = va_arg(*app, char *);
i = va_arg(*app, int);
j = va_arg(*app, int);
convert(s, i, j);
Fmt_puts(s + i, j - i, put, cl, flags,

width, precision);
}

Further Reading

Plauger (1992) gives a brief critique of the functions defined in
string.h, and shows how to implement them. Roberts (1995) describes
a simple string interface that is similar to Str and based on string.h.

The design of the Str interface is lifted almost verbatim from the
string-manipulation facilities in the Icon programming language
(Griswold and Griswold 1990). Using positions instead of indices and
using nonpositive positions to specify locations relative to the ends of
strings originated with Icon.

Str’s functions are modeled after Icon’s similarly named string func-
tions. The Icon functions are more powerful because they use Icon’s
goal-directed evaluation mechanism. For example, Icon’s find function
can return the positions of all the occurrences of one string in another as
dictated by the context in which it is called. Icon also has a string-
scanning facility that, with goal-directed evaluation, is a powerful pattern
matching capability.

Str_map can be used to implement a surprisingly varied number of
string transformations. For example, if s is a seven-character string,

Str_map("abcdefg", 1, 0, "gfedcba", s)

returns the reverse of s. Griswold (1980) explores such uses of
mappings.
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Exercises

15.1 Extend ids.c so that it recognizes and ignores C comments,
string literals, and keywords. Generalize your extended version to
accept command-line arguments to specify additional identifiers
that are to be ignored.

15.2 The Str implementation could use the string and memory func-
tions in the standard C library, like strncpy and memcpy, to copy
strings. For example, Str_sub could be written as follows.

char *Str_sub(const char *s, int i, int j) {
char *str;

convert(s, i, j);
str = strncpy(ALLOC(j - i + 1), s + i, j - i);
str[j - i] = '\0';
return str;

}

Some C compilers recognize calls to the string.h functions and
generate in-line code that may be much faster than the corre-
sponding loops in C. Highly optimized assembly-language imple-
mentations are also usually faster. Reimplement Str using the
string.h functions where possible; measure the results using a
specific C compiler on a specific machine, then characterize the
improvements for each function in terms of the lengths of their
string arguments.

15.3 Design and implement a function that searches a substring for a
pattern specified by a regular expression, like those supported in
AWK and described in Aho, Kernighan, and Weinberger (1988).
This function needs to return two values: the position at which
match begins and its length.

15.4 Icon has an extensive string scanning facility. Its ? operator estab-
lishes a scanning environment that supplies a string and a posi-
tion in this string. String functions like find can be invoked with
only one argument, in which case they operate on the string and
the position in the current scanning environment. Study Icon’s
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string-scanning facility, described in Griswold and Griswold
(1990), and design and implement an interface that provides simi-
lar functionality.

15.5 string.h defines the function

char *strtok(char *s, const char *set);

which splits s into tokens separated by characters in set. The
string s is split into tokens by calling strtok repeatedly. s is
passed only on the first call, and strtok searches for the first
character that is not in set, overwrites that character with a null
character, and returns s. Subsequent calls, which have the form
strtok(NULL, set), cause strtok to continue from where it left
off and search for the first character that is in set, overwrite that
character with a null character, and return a pointer to the begin-
ning of the token. set can be different on each call. When a search
fails, strtok returns null. Extend the Str interface with a function
that provides similar capabilities but does not modify its argu-
ment. Can you improve on strtok’s design?

15.6 The Str functions always allocate space for their results, and
these allocations might be unnecessary in some applications. Sup-
pose the functions accepted an optional destination, and allocated
space only if the destination was the null pointer. For example,

char *Str_dup(char *dst, int size,
const char *s, int i, int j, int n);

would store its result in dst[0..size-1] and return dst, if dst
were nonnull; otherwise, it would allocate space for its result, as
the current version does. Design an interface based on this
approach. Be sure to specify what happens when size is too
small.  Compare your design with the Str interface. Which is sim-
pler? Which is less prone to error?

15.7 Here’s another proposal for avoiding allocations in the Str func-
tions. Suppose the function

void Str_result(char *dst, int size);
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posts dst as the “result string” for the next call to a Str function.
If the result string is nonnull, the Str functions store their results
in dst[0..size-1] and clear the result string pointer. If the result
string is null, they allocate space for their results, as usual. Dis-
cuss the pros and cons of this proposal.
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HIGH-LEVEL STRINGS

he functions exported by the Str interface described in the previ-
ous chapter augment the conventions for handling strings in C. By
convention, strings are arrays of characters in which the last char-

acter is null. While this representation is adequate for many applications,
it does have two significant disadvantages. First, finding the length of a
string requires searching the string for its terminating null character, so
computing the length takes time proportional to the length of the string.
Second, the functions in the Str interface and some of those in the stan-
dard library assume that strings can be changed, so either they or their
callers must allocate space for string results; in applications that do not
modify strings, many of these allocations are unnecessary.

The Text interface described in this chapter uses a slightly different
representation for strings that addresses both of these disadvantages.
Lengths are computed in constant time, because they’re carried along
with the string, and allocations occur only when necessary. The strings
provided by Text are immutable — that is, they cannot be changed in
place — and they can contain embedded null characters. Text provides
functions for converting between its string representation and C-style
strings; these conversions are the price for Text’s improvements.

16.1 Interface

The Text interface represents a string by a two-element descriptor,
which gives the length of the string and points to its first character:

T

269
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〈exported types 270〉≡
typedef struct T {

int len;
const char *str;

} T;

〈text.h〉≡
#ifndef TEXT_INCLUDED
#define TEXT_INCLUDED
#include <stdarg.h>

#define T Text_T

〈exported types 270〉
〈exported data 274〉
〈exported functions 271〉

#undef T
#endif

The string pointed to by the str field is not terminated with a null char-
acter. Strings pointed to by Text_Ts may contain any character, includ-
ing the null character. Text reveals the representation of descriptors so
that clients may access the fields directly. Given a Text_T s, s.len gives
the length of the string, and the actual characters are accessed by
s.str[0..s.len-1].

Clients can read the fields of a Text_T and the characters in the string
it points to, but they must not change the fields or the characters in the
string, except via functions in this interface, or in Text_Ts they initialize,
or in those returned by Text_box. It is an unchecked runtime error to
change the string described by a Text_T. It is also a checked runtime
error to pass a Text_T with a negative len field or a null str field to any
function in this interface.

Text exports functions that pass and return descriptors by value; that
is, descriptors themselves are passed to and returned by functions,
instead of passing pointers to descriptors. As a result, none of the Text
functions allocate descriptors.

When necessary, some Text functions do allocate space for the strings
themselves. This string space is managed completely by Text; clients
must never deallocate strings, except as described below. Deallocating
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strings by external means, such as calling free or Mem_free, is an
unchecked runtime error.

The functions

〈exported functions 271〉≡
extern T     Text_put(const char *str);
extern char *Text_get(char *str, int size, T s);
extern T     Text_box(const char *str, int len);

convert between descriptors and C-style strings. Text_put copies the
null-terminated string str into the string space and returns a descriptor
for the new string. Text_put can raise Mem_Failed. It is checked run-
time error for str to be null.

Text_get copies the string described by s into str[0..size-2],
appends a null character, and returns str. It is a checked runtime error
for size to be less than s.len+1. If str is null, Text_get ignores size,
calls Mem_alloc to allocate s.len+1 bytes, copies s.str into that space,
and returns a pointer to the beginning of the allocated space. When str
is null, Text_get can raise Mem_Failed.

Clients call Text_box to build descriptors for constant strings or for
strings that they allocate. It “boxes” str and len in a descriptor and
returns the descriptor. For example,

static char editmsg[] = "Last edited by: ";
…
Text_T msg = Text_box(editmsg, sizeof (editmsg) - 1);

assigns to msg a Text_T for "Last edited by: ". Note that the second
argument to Text_box omits the null character at the end of editmsg. If
this character is not omitted, it will be treated as part of the string
described by msg. It is a checked runtime error for str to be null or for
len to be negative.

Many of the Text functions accept string positions, which are defined
as in Str. Positions identify locations between characters, including
before the first character and after the last one. Positive positions iden-
tify positions from the left of the string beginning with the first charac-
ter, and nonpositive positions identify positions from the right of the
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string. For example, the following figure from Chapter 15 shows the
positions in the string Interface.

The function

〈exported functions 271〉+≡
extern T Text_sub(T s, int i, int j);

returns a descriptor for the substring of s between positions i and j.
The positions i and j can be given in either order. For example, if

Text_T s = Text_put("Interface");

the expressions

Text_sub(s,  6, 10)
Text_sub(s,  0, -4)
Text_sub(s, 10, -4)
Text_sub(s,  6,  0)

all return descriptors for the substring face.
Since clients don’t change the characters in a string, and strings don’t

need to be terminated with a null character, Text_sub simply returns a
Text_T in which the str field points to the first character of the sub-
string of s and the len field is the length of the substring. s and the
value returned may thus share the characters in the actual string, and
Text_sub does no allocation. Clients must not count on s and the return
value sharing the same string, however, because Text may give empty
strings and one-character strings special treatment. Most of the func-
tions exported by Text are similar to those exported by Str, but many of
them don’t accept position arguments because Text_sub provides the
same capability at little cost.

I n t e r

1 2 3 4 5 6

–5 –4 –3 –2 –1 0

f a c e

7 8 9 10

–9 –8 –7 –6
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The function

〈exported functions 271〉+≡
extern int Text_pos(T s, int i);

returns the positive position in s corresponding to the arbitrary position
i. For example, if s is assigned Interface as shown above,

Text_pos(s, -4)

returns 6.
It is a checked runtime error for i in Text_pos or for i or j in

Text_sub to specify a nonexistent position in s.
The functions

〈exported functions 271〉+≡
extern T Text_cat    (T s1, T s2);
extern T Text_dup    (T s, int n);
extern T Text_reverse(T s);

concatenate, duplicate, and reverse strings; all can raise Mem_Failed.
Text_cat returns a descriptor for the string that’s the result of concate-
nating s1 and s2; if either s1 or s2 describes the empty string, the other
argument is returned. Also, Text_cat makes a new copy of s1 and s2
only when necessary.

Text_dup returns a descriptor for the string that’s the result of con-
catenating n copies of s; it is a checked runtime error for n to be nega-
tive.  Text_reverse returns a string that holds the characters from s in
the opposite order.

〈exported functions 271〉+≡
extern T Text_map(T s, const T *from, const T *to);

returns the outcome of mapping s according to the strings pointed to by
from and to as follows. For each character in s that appears in from, the
corresponding character in to appears in the result string. If a character
in s doesn’t appear in from, that character itself appears unchanged in
the output. For example,

Text_map(s, &Text_ucase, &Text_lcase)
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returns a copy of s in which uppercase letters have been folded to their
lowercase counterparts. Text_ucase and Text_lcase are examples of
the predefined descriptors exported by Text. The complete list is:

〈exported data 274〉≡
extern const T Text_cset;
extern const T Text_ascii;
extern const T Text_ucase;
extern const T Text_lcase;
extern const T Text_digits;
extern const T Text_null;

Text_cset is a string consisting of all 256 eight-bit characters,
Text_ascii holds the 128 ASCII characters, Text_ucase is the string
ABCDEFGHIJKLMNOPQRSTUVWXYZ, Text_lcase is the string abcdef-
ghijklmnopqrstuvwxyz, Text_digits is 0123456789, and Text_null
is the empty string. Clients can form other common strings by taking
substrings of these.

Text_map remembers the most recent nonnull from and to values,
and uses these values if from and to are both null. It is a checked runt-
ime error for only one of from or to to be null, or for from->len to be
different than to->len when from and to are both nonnull. Text_map
can raise Mem_Failed.

Strings are compared by

〈exported functions 271〉+≡
extern int Text_cmp(T s1, T s2);

which returns a value that’s less than zero, equal to zero, or greater than
zero if, respectively, s1 is lexically less than s2, s1 is equal to s2, or s1 is
greater than s2.

Text exports a set of string-analysis functions that are nearly identical
to those exported by Str. These functions, described below, do accept
positions in the string to be examined, because these positions usually
encode the state of the analysis. In the descriptions that follow, s[i:j]
denotes the substring of s between positions i and j, and s[i] denotes
the character to the right of position i.

The following functions look for occurrences of single characters or
sets of characters; in all cases, it is a checked runtime error for i or j to
specify nonexistent positions.
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〈exported functions 271〉+≡
extern int Text_chr  (T s, int i, int j, int c);
extern int Text_rchr (T s, int i, int j, int c);
extern int Text_upto (T s, int i, int j, T set);
extern int Text_rupto(T s, int i, int j, T set);
extern int Text_any  (T s, int i, T set);
extern int Text_many (T s, int i, int j, T set);
extern int Text_rmany(T s, int i, int j, T set);

Text_chr returns the positive position to the left of the leftmost occur-
rence of c in s[i:j], and Text_rchr returns the positive position to the
left of the rightmost occurrence of c in s[i:j]. Both functions return
zero if c doesn’t appear in s[i:j]. Text_upto returns the positive posi-
tion to the left of the leftmost occurrence of any character from set in
s[i:j], and Text_rupto returns the positive position to the left of the
rightmost occurrence of any character from set in s[i:j]. Both func-
tions return zero if none of the characters from set appear in s[i:j].

Text_any returns Text_pos(s, i) + 1 if s[i] is equal to c, and zero
otherwise. If s[i:j] begins with a character from set, Text_many
returns the positive position following a contiguous nonempty sequence
of characters from set; otherwise, it returns zero. If s[i:j] ends with a
character from set, Text_rmany returns the positive position before a
nonempty sequence of characters from set; otherwise Text_rmany
returns zero.

The remaining analysis functions look for occurrences of strings.

〈exported functions 271〉+≡
extern int Text_find  (T s, int i, int j, T str);
extern int Text_rfind (T s, int i, int j, T str);
extern int Text_match (T s, int i, int j, T str);
extern int Text_rmatch(T s, int i, int j, T str);

Text_find returns the positive position to the left of the leftmost occur-
rence of str in s[i:j], and Text_rfind returns the positive position to
the left of the rightmost occurrence of str in s[i:j]. If str doesn’t
appear in s[i:j], both functions return zero.

Text_match returns Text_pos(s, i) + str.len if s[i:j] begins
with str, and zero otherwise. Text_rmatch returns Text_pos(s, j) −
str.len if s[i:j] ends with str, and zero otherwise.

The function
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〈exported functions 271〉+≡
extern void Text_fmt(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision);

can be used with the Fmt interface as a conversion function. It consumes
a pointer to a Text_T and formats its string according to the optional
flags, width, and precision arguments in the same way that the
printf code %s formats its string argument. A pointer to a Text_T is
used because, in Standard C, passing small structures in the variable part
of a variable length argument list may not be portable. It is a checked
runtime error for the pointer to the Text_T to be null, or for app or
flags to be null.

Text gives clients some limited control over its allocation of the string
space, which is where it stores the actual strings for the results of the
functions described above that return descriptors. Specifically, the fol-
lowing functions manage that space as a stack.

〈exported types 270〉+≡
typedef struct Text_save_T *Text_save_T;

〈exported functions 271〉+≡
extern Text_save_T Text_save(void);
extern void        Text_restore(Text_save_T *save);

Text_save returns a value of the opaque pointer type Text_save_T that
encodes the “top” of the string space. This value can later be passed to
Text_restore to deallocate that portion of the string space that was
allocated since the Text_save_T value was created. If h is a value of type
Text_save_T, calling Text_restore(h) invalidates all descriptors and
all Text_save_T values that were created after h. It is a checked runtime
error to pass a null Text_save_T to Text_restore. It is an unchecked
runtime error to use these values. Text_save can raise Mem_Failed.

16.2 Implementation

The implementation of Text is much like the implementation of Str, but
the Text functions can take advantage of several important special
cases, as detailed below.
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〈text.c〉≡
#include <string.h>
#include <limits.h>
#include "assert.h"
#include "fmt.h"
#include "text.h"
#include "mem.h"

#define T Text_T

〈macros 278〉
〈types 287〉
〈data 277〉
〈static functions 286〉
〈functions 278〉

The constant descriptors all point to one string consisting of all 256
characters:

〈data 277〉≡
static char cset[] =

"\000\001\002\003\004\005\006\007\010\011\012\013\014\015\016\017"

"\020\021\022\023\024\025\026\027\030\031\032\033\034\035\036\037"

"\040\041\042\043\044\045\046\047\050\051\052\053\054\055\056\057"

"\060\061\062\063\064\065\066\067\070\071\072\073\074\075\076\077"

"\100\101\102\103\104\105\106\107\110\111\112\113\114\115\116\117"

"\120\121\122\123\124\125\126\127\130\131\132\133\134\135\136\137"

"\140\141\142\143\144\145\146\147\150\151\152\153\154\155\156\157"

"\160\161\162\163\164\165\166\167\170\171\172\173\174\175\176\177"

"\200\201\202\203\204\205\206\207\210\211\212\213\214\215\216\217"

"\220\221\222\223\224\225\226\227\230\231\232\233\234\235\236\237"

"\240\241\242\243\244\245\246\247\250\251\252\253\254\255\256\257"

"\260\261\262\263\264\265\266\267\270\271\272\273\274\275\276\277"

"\300\301\302\303\304\305\306\307\310\311\312\313\314\315\316\317"

"\320\321\322\323\324\325\326\327\330\331\332\333\334\335\336\337"

"\340\341\342\343\344\345\346\347\350\351\352\353\354\355\356\357"

"\360\361\362\363\364\365\366\367\370\371\372\373\374\375\376\377"

;
const T Text_cset   = { 256, cset };
const T Text_ascii  = { 128, cset };
const T Text_ucase  = {  26, cset + 'A' };
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const T Text_lcase  = {  26, cset + 'a' };
const T Text_digits = {  10, cset + '0' };
const T Text_null   = {   0, cset };

The Text functions accept positions, but convert them to indices of
the character to the right of the position in order to access the characters
in the string. A positive position is converted to an index by subtracting
one, and a nonpositive position is converted to an index by adding the
length of the string:

〈macros 278〉≡
#define idx(i, len) ((i) <= 0 ? (i) + (len) : (i) - 1)

An index is converted to a positive position by adding one, as illustrated
by the implementation of Text_pos, which converts its position argu-
ment to an index, then converts the index back to a positive position.

〈functions 278〉≡
int Text_pos(T s, int i) {

assert(s.len >= 0 && s.str);
i = idx(i, s.len);
assert(i >= 0 && i <= s.len);
return i + 1;

}

The first assertion in Text_pos implements the checked runtime error
that all Text_Ts must have nonnegative len fields and nonnull str
fields. The second assertion is the checked runtime error that the posi-
tion i — now an index — corresponds to a valid position in s. If s has N
characters, the valid indices are zero through N−1, but the valid posi-
tions are one through N+1, which is why the second assertion accepts
indices as large as N.

Text_box and Text_sub both build and return new descriptors.

〈functions 278〉+≡
T Text_box(const char *str, int len) {

T text;

assert(str);
assert(len >= 0);
text.str = str;
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text.len = len;
return text;

}

Text_sub is similar, but it must convert its position arguments to
indices so that it can compute the length of the result:

〈functions 278〉+≡
T Text_sub(T s, int i, int j) {

T text;

〈convert i and j to indices in 0..s.len 279〉
text.len = j - i;
text.str = s.str + i;
return text;

}

As shown, there are j − i characters between i and j, after they’ve been
converted from positions to indices. The code for that conversion also
swaps i and j so that i always specifies the index of the leftmost
character.

〈convert i and j to indices in 0..s.len 279〉≡
assert(s.len >= 0 && s.str);
i = idx(i, s.len);
j = idx(j, s.len);
if (i > j) { int t = i; i = j; j = t; }
assert(i >= 0 && j <= s.len);

The position to the right of the last character is converted to the index of
a nonexistent character, and the assertions accept such positions. 〈con-
vert i and j to indices in 0..s.len 279〉 is used only when these indices
are not used to fetch or store a character. Text_sub, for example, uses
them only to compute a starting position and length. Other Text func-
tions use the resulting values of i and j only after they’ve checked that i
and j are valid indices.

Text_put and Text_get copy strings in and out of the string space.
Text implements its own allocation function, *alloc(int len), to allo-
cate len bytes of string space for several reasons. First, alloc avoids the
block headers used in general-purpose allocators, so that it can arrange
for strings to be adjacent. This leads to several important optmizations



280 HIGH-LEVEL STRINGS
for Text_dup and Text_cat. Second, alloc can ignore alignment,
because there are no alignment restrictions for characters. Finally, alloc
must cooperate with Text_save and Text_restore. alloc is described
starting on page 286, along with Text_save and Text_restore.

Text_put is typical of the few Text functions that allocate string
space. It calls alloc to allocate the space required, copies its argument
string into that space, and returns the appropriate descriptor:

〈functions 278〉+≡
T Text_put(const char *str) {

T text;

assert(str);
text.len = strlen(str);
text.str = memcpy(alloc(text.len), str, text.len);
return text;

}

Text_put calls memcpy instead of strcpy because it must not append a
null character to text.str.

Text_get does just the reverse: It copies a string from the string
space to a C-style string. If the pointer to the C-style string is null,
Text_get calls Mem’s general-purpose allocator to allocate space for the
string and its terminating null character:

〈functions 278〉+≡
char *Text_get(char *str, int size, T s) {

assert(s.len >= 0 && s.str);
if (str == NULL)

str = ALLOC(s.len + 1);
else

assert(size >= s.len + 1);
memcpy(str, s.str, s.len);
str[s.len] = '\0';
return str;

}

Text_get calls memcpy instead of strncpy because it must copy null
characters that appear in s.
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16.2.1 String Operations

Text_dup makes n copies of its Text_T argument s.

〈functions 278〉+≡
T Text_dup(T s, int n) {

assert(s.len >= 0 && s.str);
assert(n >= 0);
〈Text_dup 281〉

}

There are several important special cases in which allocation of n copies
of s can be avoided. For example, if s is the null string or n is zero,
Text_dup returns the null string; if n is one, Text_dup can just return s:

〈Text_dup 281〉≡
if (n == 0 || s.len == 0)

return Text_null;
if (n == 1)

return s;

If s has been created recently, s.str might lie at the end of the string
space; that is, s.str + s.len might be equal to the address of the next
free byte. If so, only n − 1 copies of s are needed, because the original s
can serve as the first duplicate. The macro isatend(s, n), defined on
page 286, checks whether s.str is at the end of the string space, and
whether there’s space for at least n characters.

〈Text_dup 281〉+≡
{

T text;
char *p;
text.len = n*s.len;
if (isatend(s, text.len - s.len)) {

text.str = s.str;
p = alloc(text.len - s.len);
n--;

} else
text.str = p = alloc(text.len);

for ( ; n-- > 0; p += s.len)
memcpy(p, s.str, s.len);
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return text;
}

Text_cat returns the concatentation of two strings, s1 and s2.

〈functions 278〉+≡
T Text_cat(T s1, T s2) {

assert(s1.len >= 0 && s1.str);
assert(s2.len >= 0 && s2.str);
〈Text_cat 282〉 

}

As for Text_dup, there are several important special cases that avoid
allocations. First, if either s1 or s2 is the null string, Text_cat can sim-
ply return the other descriptor:

〈Text_cat 282〉≡
if (s1.len == 0)

return s2;
if (s2.len == 0)

return s1;

s1 and s2 might already be adjacent, in which case Text_cat can return
a descriptor for the combined result:

〈Text_cat 282〉+≡
if (s1.str + s1.len == s2.str) {

s1.len += s2.len;
return s1;

}

If s1 lies at the end of the string space, then only s2 needs to be copied;
otherwise, both strings must be copied:

〈Text_cat 282〉+≡
{

T text;
text.len = s1.len + s2.len;
if (isatend(s1, s2.len)) {

text.str = s1.str;
memcpy(alloc(s2.len), s2.str, s2.len);



IMPLEMENTATION 283
} else {
char *p;
text.str = p = alloc(s1.len + s2.len);
memcpy(p,          s1.str, s1.len);
memcpy(p + s1.len, s2.str, s2.len);

}
return text;

}

Text_reverse, which returns a copy of its argument s with its charac-
ters in the opposite order, has only two important special cases: when s
is the null string and when it has only one character:

〈functions 278〉+≡
T Text_reverse(T s) {

assert(s.len >= 0 && s.str);
if (s.len == 0)

return Text_null;
else if (s.len == 1)

return s;
else {

T text;
char *p;
int i = s.len;
text.len = s.len;
text.str = p = alloc(s.len);
while (--i >= 0)

*p++ = s.str[i];
return text;

}
}

The implementation of Text_map is similar to the implementation of
Str_map. First, it uses the from and to strings to build an array that
maps characters; given an input character c, map[c] is the character that
appears in the output string. map is initialized so that map[k] is equal to
k, then the characters in from are used to index the elements in map that
are to be mapped to the corresponding characters in to:

〈rebuild map 283〉≡
int k;
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for (k = 0; k < (int)sizeof map; k++)
map[k] = k;

assert(from->len == to->len);
for (k = 0; k < from->len; k++)

map[(unsigned char)from->str[k]] = to->str[k];
inited = 1;

The inited flag is set to one after map has been initialized, and inited
is used to implement the checked runtime error that the first call to
Text_map must specify nonnull from and to strings:

〈functions 278〉+≡
T Text_map(T s, const T *from, const T *to) {

static char map[256];
static int inited = 0;

assert(s.len >= 0 && s.str);
if (from && to) {

〈rebuild map 283〉
} else {

assert(from == NULL && to == NULL);
assert(inited);

}
if (s.len == 0)

return Text_null;
else {

T text;
int i;
char *p;
text.len = s.len;
text.str = p = alloc(s.len);
for (i = 0; i < s.len; i++)

*p++ = map[(unsigned char)s.str[i]];
return text;

}
}

Str_map doesn’t need the inited flag because it’s impossible to map
a character to the null character with Str_map; asserting that map['a']
is nonzero was enough to implement the checked runtime error (see
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page 256). Text_map, however, permits all possible mappings, and thus
cannot use a value in map to implement the check.

Text_cmp compares two strings s1 and s2 and returns a value that’s
less than zero, equal to zero, or greater than zero when s1 is less than,
equal to, or greater than s2, respectively. The important special case is
when s1 and s2 point to the same string, in which case the shorter string
is less than the longer one. Likewise, when one of the strings is a prefix
of the other, the shorter one is less.

〈functions 278〉+≡
int Text_cmp(T s1, T s2) {

assert(s1.len >= 0 && s1.str);
assert(s2.len >= 0 && s2.str);
if (s1.str == s2.str)

return s1.len - s2.len;
else if (s1.len < s2.len) {

int cond = memcmp(s1.str, s2.str, s1.len);
return cond == 0 ? -1 : cond;

} else if (s1.len > s2.len) {
int cond = memcmp(s1.str, s2.str, s2.len);
return cond == 0 ? +1 : cond;

} else
return memcmp(s1.str, s2.str, s1.len);

}

16.2.2 Memory Management

Text implements its own memory allocator so that it can take advantage
of adjacent strings in Text_dup and Text_cat. Since the string space
holds only characters, Text’s allocator can also avoid block headers and
alignment issues, which saves space. The allocator is a simple variant of
the arena allocator described in Chapter 6. The string space is like a sin-
gle arena in which the allocated chunks appear in the list emanating
from head:

〈data 277〉+≡
static struct chunk {

struct chunk *link;
char *avail;
char *limit;

} head = { NULL, NULL, NULL }, *current = &head;
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The limit field points to the byte one past the end of the chunk, avail
points to the first free byte, and link points to the next chunk, all of
which is free. current points to the “current” chunk, which is the one in
which allocations are made. The definition above initializes current to
point to a zero-length chunk; the first allocation appends a new chunk to
head.

alloc allocates len bytes from the current chunk, or allocates a new
chunk of at least 10K bytes:

〈static functions 286〉≡
static char *alloc(int len) {

assert(len >= 0);
if (current->avail + len > current->limit) {

current = current->link = 
ALLOC(sizeof (*current) + 10*1024 + len);

current->avail = (char *)(current + 1);
current->limit = current->avail + 10*1024 + len;
current->link = NULL;

}
current->avail += len;
return current->avail - len;

}

current->avail is the address of the free byte at the end of the string
space. A Text_T s appears at the end of the string space if s.str +
s.len is equal to current->avail. The macro isatend is thus

〈macros 278〉+≡
#define isatend(s, n) ((s).str+(s).len == current->avail\

&& current->avail + (n) <= current->limit)

Text_dup and Text_cat can take advantage of strings that appear at the
end of the string space only when there’s enough free space in that
chunk to satisfy the request, which explains isatend’s second
parameter.

Text_save and Text_restore give clients a way to save and restore
the location of the end of the string space, which is given by the values of
current and current->avail. Text_save returns an opaque pointer to
an instance of
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〈types 287〉≡
struct Text_save_T {

struct chunk *current;
char *avail;

};

which carries the values of current and current->avail.

〈functions 278〉+≡
Text_save_T Text_save(void) {

Text_save_T save;

NEW(save);
save->current = current;
save->avail = current->avail;
alloc(1);
return save;

}

Text_save calls alloc(1) to create a “hole” in the string space so that
isatend will fail for any string allocated before the hole. Thus, it’s
impossible for a string to straddle the end of the string space that’s
returned to the client.

Text_restore restores the values of current and current->avail,
deallocates the Text_save_T structure and clears *save, and deallo-
cates all of the chunks that follow the current one.

〈functions 278〉+≡
void Text_restore(Text_save_T *save) {

struct chunk *p, *q;

assert(save && *save);
current = (*save)->current;
current->avail = (*save)->avail;
FREE(*save);
for (p = current->link; p; p = q) {

q = p->link;
FREE(p);

}
current->link = NULL;

}



288 HIGH-LEVEL STRINGS
16.2.3 Analyzing Strings

The remaining functions exported by Text inspect strings; none of them
allocate new ones.

Text_chr looks for the leftmost occurrence of a character in s[i:j]:

〈functions 278〉+≡
int Text_chr(T s, int i, int j, int c) {

〈convert i and j to indices in 0..s.len 279〉
for ( ; i < j; i++)

if (s.str[i] == c)
return i + 1;

return 0;
}

If s.str[i] is equal to c, i + 1 is the position to the left of that character
in s. Text_rchr is similar, but looks for the rightmost occurrence of c:

〈functions 278〉+≡
int Text_rchr(T s, int i, int j, int c) {

〈convert i and j to indices in 0..s.len 279〉
while (j > i)

if (s.str[--j] == c)
return j + 1;

return 0;
}

Text_upto and Text_rupto are like Text_chr and Text_rchr, except
that they search for occurrences of any character in a set of characters,
which is specified with a Text_T:

〈functions 278〉+≡
int Text_upto(T s, int i, int j, T set) {

assert(set.len >= 0 && set.str);
〈convert i and j to indices in 0..s.len 279〉
for ( ; i < j; i++)

if (memchr(set.str, s.str[i], set.len))
return i + 1;

return 0;
}
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int Text_rupto(T s, int i, int j, T set) {
assert(set.len >= 0 && set.str);
〈convert i and j to indices in 0..s.len 279〉
while (j > i)

if (memchr(set.str, s.str[--j], set.len))
return j + 1;

return 0;
}

Str_upto and Str_rupto use the C library function strchr to check
whether a character in s appears in set. The Text functions can’t use
strchr because both s and set might contain null characters, so they
use memchr, which doesn’t interpret null characters as string
terminators.

Text_find and Text_rfind, which find occurrences of strings in
s[i:j], have a similar problem: The Str variants of these functions use
strncmp to compare substrings, but the Text functions must use mem-
cmp, which copes with null characters. Text_find uses memcmp as it
searches for the leftmost occurrence in s[i:j] of the string given by
str. The cases that merit special attention are when str is the null string
or when it has only one character.

〈functions 278〉+≡
int Text_find(T s, int i, int j, T str) {

assert(str.len >= 0 && str.str);
〈convert i and j to indices in 0..s.len 279〉
if (str.len == 0)

return i + 1;
else if (str.len == 1) {

for ( ; i < j; i++)
if (s.str[i] == *str.str)

return i + 1;
} else

for ( ; i + str.len <= j; i++)
if (equal(s, i, str))

return i + 1;
return 0;

}
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〈macros 278〉+≡
#define equal(s, i, t) \

(memcmp(&(s).str[i], (t).str, (t).len) == 0)

In the general case, Text_find must not inspect characters beyond the
substring s[i:j], which is the reason for the termination condition in
the for loop.

Text_rfind is like Text_find, but it searches for the rightmost
occurrence of str, and it avoids inspecting characters that appear before
s[i:j].

〈functions 278〉+≡
int Text_rfind(T s, int i, int j, T str) {

assert(str.len >= 0 && str.str);
〈convert i and j to indices in 0..s.len 279〉
if (str.len == 0)

return j + 1;
else if (str.len == 1) {

while (j > i)
if (s.str[--j] == *str.str)

return j + 1;
} else

for ( ; j - str.len >= i; j--)
if (equal(s, j - str.len, str))

return j - str.len + 1;
return 0;

}

Text_any steps over the character to the right of position i in s, if
that character appears in set, and returns Text_pos(s, i) + 1.

〈functions 278〉+≡
int Text_any(T s, int i, T set) {

assert(s.len >= 0 && s.str);
assert(set.len >= 0 && set.str);
i = idx(i, s.len);
assert(i >= 0 && i <= s.len);
if (i < s.len && memchr(set.str, s.str[i], set.len))

return i + 2;
return 0;

}
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When s[i] is in set, Text_any returns i + 2 because i + 1 is the posi-
tion of s[i], so i + 2 is the position after s[i].

Text_many and Text_rmany are often called after Text_upto and
Text_rupto. They step over a run of one or more characters given by a
set and return the position to the left of the first character that’s not in
the set. Text_many steps over the run that appears at the beginning of
s[i:j]:

〈functions 278〉+≡
int Text_many(T s, int i, int j, T set) {

assert(set.len >= 0 && set.str);
〈convert i and j to indices in 0..s.len 279〉
if (i < j && memchr(set.str, s.str[i], set.len)) {

do
i++;

while (i < j
&& memchr(set.str, s.str[i], set.len));
return i + 1;

}
return 0;

}

Text_rmany steps left over the run of one or more characters from
set that appear at the end of s[i:j]:

〈functions 278〉+≡
int Text_rmany(T s, int i, int j, T set) {

assert(set.len >= 0 && set.str);
〈convert i and j to indices in 0..s.len 279〉
if (j > i && memchr(set.str, s.str[j-1], set.len)) {

do
--j;

while (j >= i
&& memchr(set.str, s.str[j], set.len));
return j + 2;

}
return 0;

}

The do-while loop ends when j is the index of a character that’s not in
set or when j is equal to i − 1. In the first case, j + 2 is the position to
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the right of the offending character and thus to the left of the run of
characters in set. In the second case, j + 2 is to the left of s[i:j], which
consists entirely of characters in set. 

Text_match steps over an occurrence of a string given by str, if
s[i:j] begins with that string. As with Text_find, Text_match’s
important special cases are when str is the null string and when str has
only one character. Text_match must not inspect characters outside of
s[i:j]; the condition in the third if statement below ensures that only
characters in s[i:j] are examined.

〈functions 278〉+≡
int Text_match(T s, int i, int j, T str) {

assert(str.len >= 0 && str.str);
〈convert i and j to indices in 0..s.len 279〉
if (str.len == 0)

return i + 1;
else if (str.len == 1) {

if (i < j && s.str[i] == *str.str)
return i + 2;

} else if (i + str.len <= j && equal(s, i, str))
return i + str.len + 1;

return 0;
}

Text_rmatch is like Text_match, but it returns the position before the
string in str if s[i:j] ends with that string, and it’s careful not to
examine characters before s[i:j].

〈functions 278〉+≡
int Text_rmatch(T s, int i, int j, T str) {

assert(str.len >= 0 && str.str);
〈convert i and j to indices in 0..s.len 279〉
if (str.len == 0)

return j + 1;
else if (str.len == 1) {

if (j > i && s.str[j-1] == *str.str)
return j;

} else if (j - str.len >= i
&& equal(s, j - str.len, str))

return j - str.len + 1;
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return 0;
}

16.2.4 Conversion Functions

The last function is Text_fmt, which is a format-conversion function for
use with the functions exported by the Fmt interface. Text_fmt is used
to print Text_Ts in the same style as printf’s %s format. It just calls
Fmt_puts, which interprets the flags, width, and precision specifica-
tions for Text_Ts in the same way as printf does for C strings.

〈functions 278〉+≡
void Text_fmt(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision) {
T *s;

assert(app && flags);
s = va_arg(*app, T*);
assert(s && s->len >= 0 && s->str);
Fmt_puts(s->str, s->len, put, cl, flags,

width, precision);
}

Unlike all the other functions in the Text interface, Text_fmt consumes
a pointer to a Text_T, not a Text_T. Text_Ts are small, typically two
words, and it’s impossible to distinguish two-word structures from dou-
bles in variable length argument lists in a portable way. So, some C
implementations cannot reliably pass two-word structures by value in a
variable length argument list. Passing a pointer to a Text_T avoids these
problems in all implementations.

Further Reading

Text_Ts are similar in both their semantics and implementation to
strings in SNOBOL4 (Griswold 1972) and Icon (Griswold and Griswold
1990). Both of these languages are general-purpose, string-processing
languages, and have built-in features that are similar to the functions
exported by Text.
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Similar techniques for representing and manipulating strings have
long been used in compilers and other applications that analyze strings;
the XPL compiler generator (McKeeman, Horning, and Wortman 1970) is
an early example. In systems in which all the Text_Ts are known, gar-
bage collection can be used to manage the string space. Icon uses XPL’s
garbage-collection algorithm to reclaim string space that’s not refer-
enced by any of the known Text_Ts (Hanson 1980). It compacts the
strings for the known Text_Ts by copying them to the beginning of the
string space.

Hansen (1992) describes a completely different representation for
strings in which a substring descriptor carries enough information to
retrieve the larger string of which it is a part. This representation makes
it possible, among other things, to extend a string to either the left or the
right.

“Ropes” are another representation in which a string is represented by
a tree of substrings (Boehm, Atkinson, and Plass 1995). The characters in
a rope can be traversed in linear time, just like those in a Text_T or in a
C string, but the substring operation takes logarithmic time. Concatena-
tion, however, is much faster: Concatenating two ropes takes constant
time. Another useful feature is that a rope can be described by a function
for generating the ith character.

Exercises

16.1 Rewrite ids.c, described in Section 15.2, using the Text
functions.

16.2 Text_save and Text_restore aren’t very robust. For example,
the following sequence is erroneous, but the error is not detected.

Text_save_T x, y;
x = Text_save();
…
y = Text_save();
…
Text_restore(&x);
…
Text_restore(&y);
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After the call to Text_restore(&x), y is invalid, because it
describes a string-space location after x. Revise the implementa-
tion of Text so that this error is a checked runtime error.

16.3 Text_save and Text_restore permit only stacklike allocation.
Garbage collection would be better, but requires that all accessible
Text_Ts be known. Design an extended version of the Text inter-
face that includes a function to “register” a Text_T, and a function
Text_compact that uses the scheme described in Hanson (1980)
to compact the strings referenced by all the registered Text_Ts
into the beginning of the string space, thereby reclaiming the
space occupied by unregistered Text_Ts.

16.4 Extend the functions that search for strings, like Text_find and
Text_match, to accept Text_Ts that specify regular expressions
instead of just strings. Kernighan and Plauger (1976) describe reg-
ular expressions and the implementation of an automaton that
matches them.

16.5 Design an interface and an implementation based on the substring
model described in Hansen (1992).





17
EXTENDED-PRECISION 

ARITHMETIC

computer with 32-bit integers can represent the signed integers
from −2,147,483,648 to +2,147,483,647 (using a two’s-
complement representation) and the unsigned integers from

zero to 4,294,967,295. These ranges are large enough for many — per-
haps most — applications, but some applications need larger ranges.
Integers represent every integral value in a relatively compact range.
Floating-point numbers represent relatively few values in a huge range.
Floating-point numbers can be used when approximations to the exact
values are acceptable, such as in many scientific applications, but float-
ing-point numbers cannot be used when all of the integer values in a
large range are required.

This chapter describes a low-level interface, XP, that exports functions
for arithmetic operations on extended integers of fixed precision. The
values that can be represented are limited only by the available memory.
This interface is designed to serve higher-level interfaces like those in
the next two chapters. These higher-level interfaces are designed for use
in applications that need integer values in a potentially huge range.

17.1 Interface

An n-digit unsigned integer x is represented by the polynomial

A

x xn 1– bn 1– xn 2– bn 2– … x1b
1 x0+ + + +=
297
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where b is the base and . On a computer with 32-bit unsigned
integers, n is 32, b is 2, and each coefficient  is represented by one of
the 32 bits. This representation can be generalized to represent an
unsigned integer in any base. If, for example, b is 10, then each  is a
number between zero and nine inclusive, and x can be represented by an
array. The number 2,147,483,647 could be represented by the array

unsigned char x[] = { 7, 4, 6, 3, 8, 4, 7, 4, 1, 2 };

where x[i] holds . The digits  appear in x, least significant digit
first, which is the most convenient order for implementing the arith-
metic operations.

Choosing a larger base may save memory, because the larger the base,
the larger the digits. For example, if b is = 65,536, each digit is a
number between zero and 65,535 inclusive, and it takes only two digits
(four bytes) to represent 2,147,483,647:

unsigned short x[] = { 65535, 32767 };

and the 64-digit number

349052951084765949147849619903898133417764638493387843990820577

is represented by the 14-element (28-byte) array

{ 38625,  9033, 28867,  3500, 30620, 54807, 4503,
  60627, 34909, 43799, 33017, 28372, 31785,    8 }.

If b is  and k is the size in bits of one of the predefined unsigned
integer types in C, then a smaller base can be used without wasting
space. Perhaps more important, large bases complicate the implementa-
tion of some of the arithmetic operations. As detailed below, these com-
plications can be avoided if an unsigned long integer can hold . XP
uses  and stores each digit in an unsigned character, because
Standard C guarantees that an unsigned long has at least 32  bits, which
holds at least three bytes, so an unsigned long can hold .
With , it takes four bytes to represent the value  2,147,483,647:

unsigned char x[] = { 255, 255, 255, 127 };

and 27 bytes to represent the 64-digit number shown above:

0 x≤ i b<
xi

xi

xi xi

216

2
k

b3
1–

b 2
8

=

b3
1– 2

24
1–=

b 2
8

=
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{ 225, 150, 73, 35, 195, 112, 172,  13, 156, 119, 23, 214, 151, 17,
  211, 236, 93, 136, 23, 171, 249, 128, 212, 110, 41, 124,   8 }.

The XP interface reveals these representation details:

〈xp.h〉≡
#ifndef XP_INCLUDED
#define XP_INCLUDED

#define T XP_T
typedef unsigned char *T;

〈exported functions 299〉

#undef T
#endif

That is, an XP_T is an array of unsigned characters that holds the digits
of an n-digit number in base , least significant digit first.

The XP functions described below take n as an input argument and
XP_Ts as input and output arguments, and these arrays must be large
enough to accommodate n digits. It is a unchecked runtime error to pass
to any function in this interface a null XP_T, an XP_T that is too small, or
a nonpositive length. XP is a dangerous interface, because it omits most
checked runtime errors. There are two reasons for this design. XP’s
intended clients are higher-level interfaces that presumably specify and
implement the checked runtime errors necessary to avoid errors. Second,
XP’s interface is as simple as possible so that some of the functions can
be implemented in assembly language, if performance considerations
necessitate. This latter consideration is why none of the XP functions do
allocations.

The functions

〈exported functions 299〉≡
extern int XP_add(int n, T z, T x, T y, int carry);
extern int XP_sub(int n, T z, T x, T y, int borrow);

implement z = x + y + carry and z = x − y − borrow. Here and below, x, y,
and z denote the integer values represented by the arrays x, y, and z,
which are assumed to have n digits. carry and borrow must be zero or
one. XP_add sets z[0..n-1] to the n-digit sum x + y + carry, and returns

2
8
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the carry-out of the most significant digit. XP_sub sets z[0..n-1] to the
n-digit difference x − y − borrow and returns the borrow-out of the most
significant digit. Thus, if XP_add returns one, x + y + carry doesn’t fit in
n digits, and if XP_sub returns one, y > x. For just these two functions, it
is not an error for any of x, y, or z to be the same XP_T.

〈exported functions 299〉+≡
extern int XP_mul(T z, int n, T x, int m, T y);

implements z = z + x•y, where x has n digits and y has m digits. z must be
large enough to hold n+m digits: XP_mul adds the n+m-digit product x•y
to z. When z is initialized to zero, XP_mul sets z[0..n+m-1] to x•y.
XP_mul returns the carry-out of the most significant digit of the aug-
mented n+m-digit product. It is an unchecked runtime error for z to be
the same XP_T as x or y.

XP_mul illustrates where the const qualifier might help identify input
and output parameters and document these kinds of runtime errors. The
declaration

extern int XP_mul(T z, int n, const unsigned char *x,
                       int m, const unsigned char *y);

makes it explicit that XP_mul reads x and y and writes z, and thus
implies that z should not be the same as x or y. const T cannot be used
for x and y, because it means “constant pointer to an unsigned char”
instead of the intended “pointer to a constant unsigned char” (see
page 29). Exercise 19.5 explores some other definitions of T that work
correctly with const.

The const qualifier does not prevent the same XP_T from being passed
as x and z (or y and z), however, because an unsigned char * can be
passed to a const unsigned char *. But this use of const does permit a
const unsigned char * to be passed as x and y; in XP’s declaration for
XP_mul above, type casts must be used to pass these values. The meager
benefits of const don’t outweigh its verbosity in XP.

The function

〈exported functions 299〉+≡
extern int XP_div(int n, T q, T x, int m, T y, T r,T tmp);

implements division: It computes q = x/y and r = x mod y ; q and x have n
digits, and r and y have m digits. If y is zero, XP_div returns zero and
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leaves q and r unchanged; otherwise, it returns one. tmp must be able to
hold at least n+m+2 digits. It is an unchecked runtime error for q or r to
be one of x or y, for q and r to be the same XP_T, or for tmp to be too
small.

The functions

〈exported functions 299〉+≡
extern int XP_sum     (int n, T z, T x, int y);
extern int XP_diff    (int n, T z, T x, int y);
extern int XP_product (int n, T z, T x, int y);
extern int XP_quotient(int n, T z, T x, int y);

implement addition, subtraction, multiplication, and division of an n-
digit XP_T by a single base  digit y. XP_sum sets z[0..n-1] to x + y and
returns the carry-out of the most significant digit. XP_diff sets
z[0..n-1] to x − y and returns the borrow-out of the most significant
digit. For XP_sum and XP_diff, y must be positive and must not exceed
the base, .

XP_product sets z[0..n-1] to x•y and returns the carry-out of the
most significant digit; the carry can be as large as . XP_quotient
sets z[0..n-1] to x/y and returns the remainder, x mod y ; the remainder
can be as large as . For XP_product and XP_quotient, y must not
exceed  − 1.

〈exported functions 299〉+≡
extern int XP_neg(int n, T z, T x, int carry);

sets z[0..n-1] to ~x + carry and returns the carry-out of the most sig-
nificant digit. When carry is zero, XP_neg implements one’s-
complement negation; when carry is one, XP_neg implements a two’s-
complement negation.

XP_Ts are compared by

〈exported functions〉+≡
extern int XP_cmp(int n, T x, T y);

which returns a value less than zero, equal to zero, or greater than zero
if, respectively, x < y, x = y, or x > y.

XP_Ts can be shifted with the functions

2
8

2
8

2
8

1–

y 1–
2

8
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〈exported functions 299〉+≡
extern void XP_lshift(int n, T z, int m, T x,

int s, int fill);
extern void XP_rshift(int n, T z, int m, T x,

int s, int fill);

which assign to z the value of x shifted left or right s bits, where z has n
digits and x has m digits. When n exceeds m, the bits in the missing digits
at the most significant end of x are treated as if they were equal to zero
for a left shift and equal to fill for a right shift.  The vacated bits are
filled with fill, which must be equal to zero or one. When fill is zero,
XP_rshift implements a logical right shift; when fill is one,
XP_rshift can be used to implement an arithmetic right shift.

〈exported functions 299〉+≡
extern int           XP_length (int n, T x);
extern unsigned long XP_fromint(int n, T z,

unsigned long u);
extern unsigned long XP_toint  (int n, T x);

XP_length returns the number of digits in x; that is, it returns the index
plus one of the most significant nonzero digit in x[0..n-1]. XP_fromint
sets z[0..n-1] to u mod  and returns u/ ; that is, the bits in u that
don’t fit in z. XP_toint returns x mod (ULONG_MAX+1); that is, the least
significant 8•sizeof (unsigned long) bits of x.

The remaining XP functions convert between strings and XP_Ts.

〈exported functions 299〉+≡
extern int   XP_fromstr(int n, T z, const char *str,

int base, char **end);
extern char *XP_tostr  (char *str, int size, int base,

int n, T x);

XP_fromstr is like strtoul in the C library; it interprets the string in
str as an unsigned integer in base. It ignores leading white space, and
accepts one or more digits in base. For bases between 11 and 36,
XP_fromstr interprets either lowercase or uppercase letters as digits
greater than nine. It is a checked runtime error for base to be less than
two or more than 36.

The n-digit XP_T z accumulates the integer specified in str using the
usual multiplicative algorithm:

2
8n

2
8n
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for (p = str; *p is a digit; p++)
z ← base•z + *p’s value

z is not initialized to zero; clients must initialize z properly. XP_fromstr
returns the first nonzero carry-out of the multiplication base•z, or zero
otherwise. Thus,  XP_fromstr returns nonzero if the number does not fit
in z.

If end is nonnull, *end is assigned the pointer to the character that ter-
minated XP_fromstr’s interpretation because either the multiplication
overflowed or a nondigit was scanned. If the characters in str do not
specify an integer in base, XP_fromstr returns zero and sets *end to
str, if end is nonnull. It is a checked runtime error for str to be null.

XP_tostr fills str with a null-terminated string that is the character
representation of x in base, and returns str. x is set to zero. Uppercase
letters are used for digits that exceed nine when base exceeds 10. It is a
checked runtime error for base to be less than two or more than 36. It is
also a checked runtime error for str to be null or for size to be too
small; that is, for the character representation of x plus a null character
to require more than size characters.

17.2 Implementation

〈xp.c〉≡
#include <ctype.h>
#include <string.h>
#include "assert.h"
#include "xp.h"

#define T XP_T
#define BASE (1<<8)

〈data 320〉
〈functions 304〉

XP_fromint and XP_toint illustrate the kinds of arithmetic manipu-
lations the XP functions must perform. XP_fromint initializes an XP_T
so that it is equal to an unsigned long value:
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〈functions 304〉≡
unsigned long XP_fromint(int n, T z, unsigned long u) {

int i = 0;

do
z[i++] = u%BASE;

while ((u /= BASE) > 0 && i < n);
for ( ; i < n; i++)

z[i] = 0;
return u;

}

The u%BASE is not strictly necessary, because the assignment to z[i]
does the modulus implicitly. All of the arithmetic XP functions do these
kinds of explicit operations to help document the algorithms they use.
Since the base is a constant power of two, most compilers will convert
multiplication, division, or modulus by the base to the equivalent left
shift, right shift, or logical and.

XP_toint is the inverse of XP_fromint: It returns the least significant
8•sizeof (unsigned long) bits of an XP_T as an unsigned long.

〈functions 304〉+≡
unsigned long XP_toint(int n, T x) {

unsigned long u = 0;
int i = (int)sizeof u;

if (i > n)
i = n;

while (--i >= 0)
u = BASE*u + x[i];

return u;
}

A nonzero, n-digit XP_T has fewer than n significant digits when it has
one or more leading zeros. XP_length returns the number of significant
digits, not counting the leading zeros:

〈functions 304〉+≡
int XP_length(int n, T x) {

while (n > 1 && x[n-1] == 0)
n--;
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return n;
}

17.2.1 Addition and Subtraction

The algorithms for implementing addition and subtraction are system-
atic renditions of the pencil-and-paper techniques from grade school. An
example in base 10 best illustrates the addition z = x + y :

Addition proceeds from the least significant to most significant digit,
and, in this example, the initial value of the carry is zero. Each step
forms the sum ;  is , and the new carry is

, where b is the base — 10 in this example. The small numbers in the
top row are the carry values, and the two-digit numbers in the bottom
row are the values of S. In this example, the carry-out is one, because the
sum doesn’t fit in four digits. XP_add implements exactly this algorithm,
and returns the final value of the carry:

〈functions 304〉+≡
int XP_add(int n, T z, T x, T y, int carry) {

int i;

for (i = 0; i < n; i++) {
carry += x[i] + y[i];
z[i] = carry%BASE;
carry /= BASE;

}
return carry;

}

At each iteration, carry holds the single-digit sum S momentarily; then
it holds just the carry. Each digit is a number between zero and , and
the carry can be zero or one, so  is the
largest value of a single-digit sum, which easily fits in an int.

1 0 1 0

9 4 2 8
+ 7 3 2

1 0 11 06 10

S carry xi yi+ += zi S mod b
S b⁄

b 1–
b 1–( ) b 1–( ) 1+ + 2b 1– 511= =
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Subtraction, z = x − y, is similar to addition:

Subtraction proceeds from the least significant to most significant digit,
and, in this example, the initial value of the borrow is zero. Each step
forms the difference ;  is D mod b, and the
new borrow is 1 − D/b. The small numbers in the top row are the borrow
values, and the two-digit numbers in the bottom row are the values of D.

〈functions 304〉+≡
int XP_sub(int n, T z, T x, T y, int borrow) {

int i;

for (i = 0; i < n; i++) {
int d = (x[i] + BASE) - borrow - y[i];
z[i] = d%BASE;
borrow = 1 - d/BASE;

}
return borrow;

}

D is at most , which fits in an int. If the
final borrow is nonzero, then x is less than y.

Single-digit addition and subtraction are simpler than the more gen-
eral functions, and they use the second operand as the carry or borrow:

〈functions 304〉+≡
int XP_sum(int n, T z, T x, int y) {

int i;

for (i = 0; i < n; i++) {
y += x[i];
z[i] = y%BASE;
y /= BASE;

}
return y;

}

0 1 1 0 0

9 4 2 8
− 7 3 2

18 06 09 16

D xi b borrow yi––+= zi

b 1–( ) b 0 0––+ 2b 1– 511= =
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int XP_diff(int n, T z, T x, int y) {
int i;

for (i = 0; i < n; i++) {
int d = (x[i] + BASE) - y;
z[i] = d%BASE;
y = 1 - d/BASE;

}
return y;

}

XP_neg is like single-digit addition, but x’s digits are complemented
before the addition:

〈functions 304〉+≡
int XP_neg(int n, T z, T x, int carry) {

int i;

for (i = 0; i < n; i++) {
carry += (unsigned char)~x[i];
z[i] = carry%BASE;
carry /= BASE;

}
return carry;

}

The cast ensures that ~x[i] is less than b.

17.2.2 Multiplication

If x has n digits and y has m digits, z = x•y forms m partial products each
with n digits, and the sum of these m partial products forms a result
with n+m digits. The following example illustrates this process for n = 4
and m = 3 when the initial value of z is zero:
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The partial products do not have to be computed explicitly; each one can
be added to z as the digits in the product are computed. For example, the
digits in the first partial product, 8•732, are computed from the least
significant to most significant digit. The ith digit of this partial product
is added to the ith digit of z along with the normal carry computation
used in addition. The ith digit of the second partial product, 2•732, is
added to the i+1st digit of z. In general, when the partial product involv-
ing  is computed, the digits are added to z beginning at its ith digit.

〈functions 304〉+≡
int XP_mul(T z, int n, T x, int m, T y) {

int i, j, carryout = 0;

for (i = 0; i < n; i++) {
unsigned carry = 0;
for (j = 0; j < m; j++) {

carry += x[i]*y[j] + z[i+j];
z[i+j] = carry%BASE;
carry /= BASE;

}
for ( ; j < n + m - i; j++) {

carry += z[i+j];
z[i+j] = carry%BASE;
carry /= BASE;

}
carryout |= carry;

}
return carryout;

}

7 3 2
× 9 4 2 8

5 8 5 6
1 4 6 4

2 9 2 8
+ 6 5 8 8

6 9 0 1 2 9 6

xi
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As the digits from the partial products are added to z in the first nested
for loop, the carry can be as large as b − 1, so the sum, stored in carry,
can be as large as  = 65,280, which fits in
an unsigned. After adding a partial product to z, the second nested for
loop adds the carry to the remaining digits in z, and records the carry
that spills out of the most significant end of z for this addition. If this
carry is ever equal to one, the carry-out of z + x•y is one.

Single-digit multiplication is equivalent to calling XP_mul, with m equal
to one and z initialized to zero:

〈functions 304〉+≡
int XP_product(int n, T z, T x, int y) {

int i;
unsigned carry = 0;

for (i = 0; i < n; i++) {
carry += x[i]*y;
z[i] = carry%BASE;
carry /= BASE;

}
return carry;

}

17.2.3 Division and Comparison

Division is the most complicated of the arithmetic functions. There are
several algorithms that may be used, each with their pros and cons. Per-
haps the easiest algorithm to understand is the one that is derived from
the following mathematical rules to compute q = x/y and r = x mod y. 

if x < y then q ← 0, r ← x
else
q′ ← x/2y, r′ ← x mod 2y
if r′ < y then q ← 2q′, r ← r′ else q ← 2q′ + 1, r ← r′ − y

The intermediate computations involving q′ and r′ must be done using
XP_Ts, of course.

The problem with this recursive algorithm is the allocations for q′ and
r′. There can be as many as lg x (log base 2) of these allocations, because
lg x is the maximum recursion depth. The XP interface forbids these
implicit allocations.

b 1–( ) b 1–( ) b 1–( )+ b2 b–=
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XP_div uses an efficient iterative algorithm for the general case when
x ≥ y and y has at least two significant digits; it uses much simpler algo-
rithms for the easier cases when x < y and when y has only one digit.

〈functions 304〉+≡
int XP_div(int n, T q, T x, int m, T y, T r, T tmp) {

int nx = n, my = m;

n = XP_length(n, x);
m = XP_length(m, y);
if (m == 1) {

〈single-digit division 311〉
} else if (m > n) {

memset(q, '\0', nx);
memcpy(r, x, n);
memset(r + n, '\0', my - n);

} else {
〈long division 312〉

}
return 1;

}

XP_div checks for single-digit division first because that case handles
division by zero.

Single-digit division is easy, because the quotient digits can be com-
puted using ordinary unsigned integer division in C. Division proceeds
from the most significant to the least significant digit, and the initial
value of the carry is zero. Dividing 9,428 by 7 in base 10 illustrates the
steps:

At each step, the partial dividend ; the quotient digit
 and the new carry is . The carry values are the small

digits above. The final value of the carry is the remainder. This operation
is exactly what is implemented by XP_quotient, which returns the
remainder:

〈functions 304〉+≡
int XP_quotient(int n, T z, T x, int y) {

1 3 4 6
7 09 24 32 48 6

R carry b⋅ xi+=
qi R y0⁄= R mod y0
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int i;
unsigned carry = 0;

for (i = n - 1; i >= 0; i--) {
carry = carry*BASE + x[i];
z[i] = carry/y;
carry %= y;

}
return carry;

}

R — the value assigned to carry in XP_quotient — can be as large as
 = 65,535, which fits in an unsigned.

In XP_div, the call to XP_quotient returns r’s least significant digit,
so the rest must be set to zero explicitly:

〈single-digit division 311〉≡
if (y[0] == 0)

return 0;
r[0] = XP_quotient(nx, q, x, y[0]);
memset(r + 1, '\0', my - 1);

In the general case, an n-digit dividend is divided by an m-digit divisor,
where n ≥ m and m > 1. Dividing 615,367 by 296 in base 10 illustrates
the process. The dividend is extended with a leading zero so that n
exceeds m:

Computing each quotient digit, , efficiently is the crux of the long divi-
sion problem because that computation involves m-digit operands.

2 0 7 8
2 9 6 0 6 1 5 3 6 7

0 5 9 2
0 2 3 3
0 0 0 0

2 3 3 6
2 0 7 2

2 6 4 7
2 3 6 8

2 7 9

b 1–( )b b 1–( )+ b2
1–=

qk
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Assuming for the moment that we know how to compute the quotient
digits, the following pseudocode outlines an implementation of long
division.

rem ← x with a leading zero
for (k = n - m; k >= 0; k--) {

compute qk
dq ← y∗ qk
q->digits[k] = qk;
rem ← rem - dq•
}

r ← rem

rem starts equal to x with a leading zero. The loop computes the n−m+1
quotient digits, most significant digit first, by dividing the m-digit divi-
sor into the m+1-digit prefix of rem. At the end of each iteration, rem is
reduced by subtracting the product of qk and y, which shortens rem by
one digit. For the example above, n = 6, m = 3, and the loop body is exe-
cuted four times, for k = 6 −3 = 3, 2, 1, and 0. The table below lists the
values of k, rem, qk, and dq for each iteration. The underlining in the sec-
ond column identifies the prefix of rem that is divided by y, which is 296.

XP_div needs space to hold the digits for the two temporaries rem and
dq; it needs n+1 bytes for rem and m+1 bytes for dq, which is why tmp
must be at least n+m+2 bytes long. Fleshing out the pseudocode above,
the chunk for long division becomes

〈long division 312〉≡
int k;
unsigned char *rem = tmp, *dq = tmp + n + 1;
assert(2 <= m && m <= n);

k rem qk dq

3 0615367 2 0592

2 023367 0 0000

1 23367 7 2072

0 2647 8 2368

279

bk
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memcpy(rem, x, n);
rem[n] = 0;
for (k = n - m; k >= 0; k--) {

int qk;
〈compute qk, dq ← y•qk 314〉
q[k] = qk;
〈rem ← rem - dq•  315〉

}
memcpy(r, rem, m);
〈fill out q and r with 0s 313〉

tmp[0..n] holds the n+1 digits for rem, and tmp[n+1..n+1+m] holds dq’s
m+1 digits. rem always has k+m+1 digits in tmp[0..k+m]. This code com-
putes an n−m+1-digit quotient and an m-digit remainder; the remaining
digits in q and r must be set to zero:

〈fill out q and r with 0s 313〉≡
{

int i;
for (i = n-m+1; i < nx; i++)

q[i] = 0;
for (i = m; i < my; i++)

r[i] = 0;
}

All that remains is computing the quotient digits. A simple — but
unsuitable — approach starts with qk equal to b−1 and decrements it
while y•qk exceeds the m+1-digit prefix of rem:

qk = BASE-1;
dq ← y•qk;
while (rem[k..k+m] < dq) {

qk--;
dq ← y•qk;

}

This approach is too slow: The loop might take b−1 iterations, and each
iteration requires an m-digit multiplication and an m+1-digit compari-
son. A better approach is to estimate qk more accurately using normal
integer arithmetic, and then adjust it when the estimate is wrong. It
turns out that dividing the three-digit prefix of rem by the two-digit pre-

bk
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fix of y gives an estimate of qk that is either correct or just one too large.
Thus, the loop above is replaced by a single test:

〈compute qk, dq ← y•qk 314〉≡
{

int i;
assert(2 <= m && m <= k+m && k+m <= n);
〈qk ← y[m-2..m-1]/rem[k+m-2..k+m] 314〉
dq[m] = XP_product(m, dq, y, qk);
for (i = m; i > 0; i--)

if (rem[i+k] != dq[i])
break;

if (rem[i+k] < dq[i])
dq[m] = XP_product(m, dq, y, --qk);

}

XP_product, shown above, computes y[0..m-1]•qk, assigns the result to
dq, and returns the final carry, which is dq’s final digit. The for loop com-
pares rem[k..k+m] with dq one digit at a time. If dq exceeds the m+1-
digit prefix of rem, qk is one too large, so it is decremented and dq is
recomputed.

Estimating qk can be done with normal integer division:

〈qk ← y[m−2..m−1]/rem[k+m-2..k+m] 314〉≡
{

int km = k + m;
unsigned long y2 = y[m-1]*BASE + y[m-2];
unsigned long r3 = rem[km]*(BASE*BASE) +

rem[km-1]*BASE + rem[km-2];
qk = r3/y2;
if (qk >= BASE)

qk = BASE - 1;
}

r3 can be as large as  = 16,777,215,
which fits in an unsigned long. This computation is what constrains the
choice of BASE. An unsigned long can hold values less than , which
dictates that , so BASE must be less than  and thus
cannot exceed 1,625. 256 is the largest power of two that does not
exceed 1,625 and is also the size of a built-in type.

b 1–( )b2 b 1–( )b b 1–( )+ + b3
1–=

2
32

b3
1– 232< 2

10.6666
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The final piece in the long-division puzzle is to subtract dq from the
m+1-digit prefix of rem, which reduces rem and shortens it by one digit.
This subtraction can be done by conceptually shifting dq left by k digits
and subtracting that from rem. XP_sub, shown above, can be used to do
this subtraction by passing it pointers to the appropriate digits in rem:

〈rem ← rem - dq•  315〉≡
{

int borrow;
assert(0 <= k && k <= k+m);
borrow = XP_sub(m + 1, &rem[k], &rem[k], dq, 0);
assert(borrow == 0);

}

The code in 〈compute qk, dq ← y•qk 314〉 shows that two multidigit
numbers are compared by comparing their digits, most significant digit
first. XP_cmp does exactly this for its two XP_T arguments:

〈functions 304〉+≡
int XP_cmp(int n, T x, T y) {

int i = n - 1;

while (i > 0 && x[i] == y[i])
i--;

return x[i] - y[i];
}

17.2.4 Shifting

Two functions in XP’s implementation shift XP_Ts left and right by a
specified number of bits. A shift of s bits is done in two steps: The first
step shifts 8•(s/8) bits by moving a byte at a time, and the second step
shifts the remaining s mod 8 bits, s mod 8 bits at a time. fill is set to a
byte of all ones or zeroes so that it can be used to fill a byte a time, as
shown below.

〈functions 304〉+≡
void XP_lshift(int n, T z, int m, T x, int s, int fill) {

fill = fill ? 0xFF : 0;
〈shift left by s/8 bytes 316〉
s %= 8;

bk
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if (s > 0)
〈shift z left by s bits 317〉

}

These steps are illustrated by the following figure, which shows what
happens when a six-digit XP_T with 44 ones is shifted left by 13 bits into
an eight-digit XP_T; the light shading on the right identifies the vacated
bits, which are set to fill.

Shifting left s/8 bytes can be summarized by the following assignments.

z[m+(s/8)..n-1] ← 0
z[s/8..m+(s/8)-1] ← x[0..m-1]
z[0..(s/8)-1] ← fill.

The first assignment clears the digits in z that don’t appear in x shifted
left by s/8 bytes. In the second assignment,  is copied to , most
significant byte first, and the third assignment sets z’s s/8 least signifi-
cant bytes to the fill. Each of these assignments involves a loop, and the
initialization code handles the case when n is less than m:

〈shift left by s/8 bytes 316〉≡
{

int i, j = n - 1;
if (n > m)

i = m - 1;
else

i = n - s/8 - 1;
for ( ; j >= m + s/8; j--)

13/8 bytes

13%8 bits

xi zi s 8⁄+
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z[j] = 0;
for ( ; i >= 0; i--, j--)

z[j] = x[i];
for ( ; j >= 0; j--)

z[j] = fill;
}

In the second step, s has been reduced to the number of bits to shift.
This shift is equivalent to multiplying z by , then setting the s least
significant bits of z to the fill:

〈shift z left by s bits 317〉≡
{

XP_product(n, z, z, 1<<s);
z[0] |= fill>>(8-s);

}

fill is either zero or 0xFF, so fill>>(8-s) forms s fill bits in the least
significant bits of a byte.

A similar two-step process is used for shifting right: The first step
shifts s/8 bytes to the right, and the second step shifts the remaining
s mod 8 bits.

〈functions 304〉+≡
void XP_rshift(int n, T z, int m, T x, int s, int fill) {

fill = fill ? 0xFF : 0;
〈shift right by s/8 bytes 318〉
s %= 8;
if (s > 0)

〈shift z right by s bits 318〉
}

Shifting a six-digit XP_T with 44 ones right by 13 bits into an eight-digit
XP_T illustrates the steps in right shift in the following figure; again the
light shading on the left identifies the vacated and excess bits, which are
set to fill.

2
s
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The three assignments for right shift are

z[0..m-(s/8)-1] ← x[s/8..m-1]
z[m-(s/8)..m-1] ← fill
z[m..n-1] ← fill.

The first assignment copies  to , least significant byte first,
starting with byte s/8. The second assignment sets the vacated bytes to
the fill, and the third sets the digits in z that don’t appear in x to fill.
The second and third assignments can, of course, be done in the same
loop:

〈shift right by s/8 bytes 318〉≡
{

int i, j = 0;
for (i = s/8; i < m && j < n; i++, j++)

z[j] = x[i];
for ( ; j < n; j++)

z[j] = fill;
}

The second step shifts z right by s bits, which is equivalent to dividing z
by :

〈shift z right by s bits 318〉≡
{

XP_quotient(n, z, z, 1<<s);
z[n-1] |= fill<<(8-s);

}

13/8 bytes

13%8 bits

xi zi s 8⁄–

2
s
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The expression fill<<(8-s) forms s fill bits in the most significant bits
of a byte, which is then OR’ed into z’s most significant byte.

17.2.5 String Conversions

The last two XP functions convert XP_Ts to strings and vice versa.
XP_fromstr converts a string to an XP_T; it accepts optional white space
followed by one or more digits in the specified base, which must be from
two to 36 inclusive. For bases that exceed 10, letters specify the digits
that exceed nine. XP_fromstr stops scanning its string argument when it
encounters an illegal character or the null character, or when the carry-
out from the multiplication is nonzero.

〈functions 304〉+≡
int XP_fromstr(int n, T z, const char *str,

int base, char **end) {
const char *p = str;

assert(p);
assert(base >= 2 && base <= 36);
〈skip white space 320〉
if (〈*p is a digit in base 320〉) {

int carry;
for ( ; 〈*p is a digit in base 320〉; p++) {

carry = XP_product(n, z, z, base);
if (carry)

break;
XP_sum(n, z, z, map[*p-'0']);

}
if (end)

*end = (char *)p;
return carry;

} else {
if (end)

*end = (char *)str;
return 0;

}
}
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〈skip white space 320〉≡
while (*p && isspace(*p))

p++;

If end is nonnull, XP_fromstr sets *end to the pointer to the character
that terminated the scan.

If c is a digit character, map[c-'0'] is the corresponding digit value;
for example, map['F'-'0'] is 15.

〈data 320〉≡
static char map[] = {

 0,  1,  2,  3,  4,  5,  6,  7,  8,  9,
36, 36, 36, 36, 36, 36, 36,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 36, 36, 36, 36, 36,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35

};

map[c-'0'] is 36 for those few invalid digit characters that lie between
0 and z in the ASCII collating sequence. This value is chosen so that c is
a digit in base if map[c-'0'] is less than base. Thus, XP_fromstr tests
whether *p is a digit character with

〈*p is a digit in base 320〉≡
(*p && isalnum(*p) && map[*p-'0'] < base)

XP_tostr uses the usual algorithm for computing the string represen-
tation of x, which peels off the digits last one first, but XP_tostr uses
the XP functions to do the arithmetic.

〈functions 304〉+≡
char *XP_tostr(char *str, int size, int base,

int n, T x) {
int i = 0;

assert(str);
assert(base >= 2 && base <= 36);
do {

int r = XP_quotient(n, x, x, base);
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assert(i < size);
str[i++] =

"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"[r];
while (n > 1 && x[n-1] == 0)

n--;
} while (n > 1 || x[0] != 0);
assert(i < size);
str[i] = '\0';
〈reverse str 321〉
return str;

}

The digits end up in str backward, so XP_tostr concludes by reversing
them:

〈reverse str 321〉≡
{

int j;
for (j = 0; j < --i; j++) {

char c = str[j];
str[j] = str[i];
str[i] = c;

}
}

Further Reading

Most of the arithmetic functions in XP are straightforward implementa-
tions of the algorithms everyone learned in grade school. Chapter 4 in
Hennessy and Patterson (1994) and Section 4.3 in Knuth (1981) describe
the classical algorithms for implementing the arithmetic operations.
Knuth (1981) nicely summarizes the long history of these algorithms.

Division is difficult because of the constraints imposed in computing
the quotient digits. The algorithm used in XP_div is taken from Brinch-
Hansen (1994), which includes the proof that the estimated quotient
digit is off by at most one. Brinch-Hansen also shows how to avoid cor-
recting qk most of time by scaling the operands. Scaling costs an extra
single-digit multiplication and division, but can avoid most of the second
calls to product when qk must be decremented.
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Exercises

17.1 Implement the recursive division algorithm and compare its exe-
cution time and space performance with the Brinch-Hansen algo-
rithm used in XP_div. Are there any conditions under which the
recursive algorithm is preferable?

17.2 Implement the “shift and subtract” division algorithm described
in Chapter 4 of Hennessy and Patterson (1994) and compare its
performance with the Brinch-Hansen algorithm used in XP_div.

17.3 Most of the XP functions take time proportional to the number of
digits in their operands. Representing XP_Ts in base would
thus make these functions run twice as fast. Division, however,
presents a problem, because

.

This exceeds ULONG_MAX on most 32-bit computers, and normal C
integer arithmetic can’t be used to estimate the quotient digits in a
portable fashion. Devise a way around this problem, implement XP
using base , and measure the benefits. Is the added complexity
of division worth the benefits?

17.4 Do Exercise 17.3 for base .

17.5 Extended-precision arithmetic in larger bases, like , is often
easier to implement in assembly language, because many ma-
chines have double-precision instructions and it’s usually easy to
capture carries and borrows. Assembly-language implementations
are invariably faster, too. Reimplement XP in assembly language
on your favorite computer and quantify its speed improvements.

17.6 Implement an XP function that generates random numbers, uni-
formly distributed in a specified range.
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ARBITRARY-PRECISION 

ARITHMETIC

his chapter describes the AP interface, which provides signed inte-
gers of arbitrary precision and arithmetic operations on them.
That is, unlike XP_Ts, the integers provided by AP can be negative

or positive, and they can have an arbitrary number of digits. The values
that can be represented are limited only by the available memory. These
integers can be used in applications that need integer values in a poten-
tially huge range. For example, some mutual-fund companies track share
prices to the nearest centicent — 1/10,000 of a dollar — and thus might
do all computations in centicents. A 32-bit unsigned integer can repre-
sent only $429,496.7295, which is only a tiny fraction of the billions of
dollars held by some funds.

AP uses XP, of course, but AP is a high-level interface: It reveals only an
opaque type that represents arbitrary-precision signed integers. AP
exports functions to allocate and deallocate these integers, and to per-
form the usual arithmetic operations on them. It also implements the
checked runtime errors that XP omits. Most applications should use AP
or the MP interface described in the next chapter.

18.1 Interface

The AP interface hides the representation of an arbitrary-precision
signed integer behind an opaque pointer type:

T
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〈ap.h〉≡
#ifndef AP_INCLUDED
#define AP_INCLUDED
#include <stdarg.h>

#define T AP_T
typedef struct T *T;

〈exported functions 324〉

#undef T
#endif

It is a checked runtime error to pass a null AP_T to any function in this
interface, except where noted below.

AP_Ts are created by

〈exported functions 324〉≡
extern T AP_new    (long int n);
extern T AP_fromstr(const char *str, int base,

char **end);

AP_new creates a new AP_T, initializes it to the value of n, and returns it.
AP_fromstr creates a new AP_T, initializes it to the value specified by
str and base, and returns it. AP_new and AP_fromstr can raise
Mem_Failed.

AP_fromstr is like strtol in the C library; it interprets the string in
str as an integer in base. It ignores leading white space, and accepts an
optional sign followed by one or more digits in base. For bases between
11 and 36, AP_fromstr interprets either lowercase or uppercase letters
as digits greater than nine. It is a checked runtime error for base to be
less than two or more than 36.

If end is nonnull, *end is assigned the pointer to the character that ter-
minated AP_fromstr’s interpretation. If the characters in str do not
specify an integer in base, AP_fromstr returns null and sets *end to
str, if end is nonnull. It is a checked runtime error for str to be null.

The functions

〈exported functions 324〉+≡
extern long int AP_toint(T x);
extern char    *AP_tostr(char *str, int size,
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int base, T x);
extern void     AP_fmt(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision);

extract and print the integers represented by AP_Ts. AP_toint returns a
long int with the same sign as x and a magnitude equal to |x | mod
(LONG_MAX+1), where LONG_MAX is the largest positive long int. If x is
LONG_MIN, which is -LONG_MAX-1 on two’s-complement machines,
AP_toint returns -((LONG_MAX+1) mod (LONG_MAX+1)), which is zero.

AP_tostr fills str with a null-terminated string that is the character
representation of x in base, and returns str. Uppercase letters are used
for digits that exceed nine when base exceeds 10. It is a checked runtime
error for base to be less than two or more than 36.

If str is nonnull, AP_tostr fills str up to size characters. It is a
checked runtime error for size to be too small — that is, for the charac-
ter representation of x plus a null character to require more than size
characters. If str is null, size is ignored; AP_tostr allocates a string
large enough to hold the representation of x, and returns that string. It is
the client’s responsibility to deallocate the string. When str is null,
AP_tostr can raise Mem_Failed.

AP_fmt can be used with the functions in the Fmt interface as a con-
version function to format AP_Ts. It consumes an AP_T and formats it
according to the optional flags, width, and precision in the same way
that the printf specifier %d formats its integer argument. AP_fmt can
raise Mem_Failed. It is a checked runtime error for app or flags to be
null.

AP_Ts are deallocated by

〈exported functions 324〉+≡
extern void AP_free(T *z);

AP_free deallocates *z and sets *z to null. It is a checked runtime
error for z or *z to be null.

The following functions perform arithmetic operations on AP_Ts. Each
returns an AP_T for the result, and each can raise Mem_Failed.

〈exported functions 324〉+≡
extern T AP_neg(T x);
extern T AP_add(T x, T y);
extern T AP_sub(T x, T y);
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extern T AP_mul(T x, T y);
extern T AP_div(T x, T y);
extern T AP_mod(T x, T y);
extern T AP_pow(T x, T y, T p);

AP_neg returns -x, AP_add returns x + y, AP_sub returns x − y, and
AP_mul returns x•y. Here and below, x and y denote the integer values
represented by x and y. AP_div returns x/y, and AP_mod returns x mod
y. Division truncates to the left: toward minus infinity when one of x or y
is negative and toward zero otherwise, so the remainder is always posi-
tive. More precisely, the quotient, q, is the maximum integer that does
not exceed the real number w such that w•y = x, and the remainder is
defined to be x − y•q. This definition is identical to the one implemented
by the Arith interface described in Chapter 2. For AP_div and AP_mod, it
is a checked runtime error for y to be zero.

AP_pow returns  when p is null. When p is nonnull, AP_pow returns
mod p. It is a checked runtime error for y to be negative, or for p to

be nonnull and less than two.
The convenience functions

〈exported functions 324〉+≡
extern T    AP_addi(T x, long int y);
extern T    AP_subi(T x, long int y);
extern T    AP_muli(T x, long int y);
extern T    AP_divi(T x, long int y);
extern long AP_modi(T x, long int y);

are similar to the functions described above but take a long int for y. For
example, AP_addi(x, y) is equivalent to AP_add(x, AP_new(y)). The
rules regarding division and modulus are the same as for AP_div and
AP_mod. Each of these functions can raise Mem_Failed.

AP_Ts can be shifted with the functions

〈exported functions 324〉+≡
extern T AP_lshift(T x, int s);
extern T AP_rshift(T x, int s);

AP_lshift returns an AP_T equal to x shifted left by s bits, which is
equivalent to multiplying x by . AP_rshift returns an AP_T equal to x
shifted right by s bits, which is equivalent to dividing x by . The values
returned by both functions have the same sign as x, unless the shift val-

xy

xy( )
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ues are zero, and the vacated bits are set to zero. It is a checked runtime
error for s to be negative, and the shift functions can raise Mem_Failed.

AP_Ts are compared by

〈exported functions 324〉+≡
extern int AP_cmp (T x, T y);
extern int AP_cmpi(T x, long int y);

Both functions return an integer less than zero, equal to zero, or greater
than zero, if, respectively, x < y, x = y, or x > y.

18.2 Example: A Calculator

A calculator that does arbitrary-precision computations illustrates the
use of the AP interface. The implementation of the AP interface,
described in the next section, illustrates the use of the XP interface.

The calculator, calc, uses Polish suffix notation: Values are pushed
onto a stack, and operators pop their operands from the stack and push
their results. A value is one or more consecutive decimal digits, and the
operators are as follows.

White-space characters separate values but are otherwise ignored; other
characters are announced as unrecognized operators. The size of the
stack is limited only by available memory, but a diagnostic announces
stack underflow.

~ negation

+ addition

- subtraction

* multiplication

/ division

% remainder

^ exponentiation

d duplicate the value at the top of the stack

p print the value at the top of the stack

f print all the values on the stack from the top down

q quit
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calc is a simple program that has three main tasks: interpreting the
input, computing values, and managing a stack.

〈calc.c〉≡
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "stack.h"
#include "ap.h"
#include "fmt.h"

〈calc data 328〉
〈calc functions 328〉

As the inclusion of stack.h suggests, calc uses the stack interface
described in Chapter 2 for its stack:

〈calc data 328〉≡
Stack_T sp;

〈initialization 328〉≡
sp = Stack_new();

calc must not call Stack_pop when sp is empty, so it wraps all pop
operations in a function that checks for underflow:

〈calc functions 328〉≡
AP_T pop(void) {

if (!Stack_empty(sp))
return Stack_pop(sp);

else {
Fmt_fprint(stderr, "?stack underflow\n");
return AP_new(0);

}
}

Always returning an AP_T, even when the stack is empty, simplifies
error-checking elsewhere in calc.

The main loop in calc reads the next “token” — value or operator —
and switches on it:
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〈calc functions 328〉+≡
int main(int argc, char *argv[]) {

int c;

〈initialization 328〉
while ((c = getchar()) != EOF)

switch (c) {
〈cases 329〉
default:

if (isprint(c))
Fmt_fprint(stderr, "?'%c'", c);

else
Fmt_fprint(stderr, "?'\\%03o'", c);

Fmt_fprint(stderr, " is unimplemented\n");
break;

}
〈clean up and exit 329〉

}

〈clean up and exit 329〉≡
〈clear the stack 333〉
Stack_free(&sp);
return EXIT_SUCCESS;

An input character is either white space, the first digit of a value, an
operator, or something else, which is an error as shown in the default
case above. White space is simply ignored:

〈cases 329〉≡
case ' ': case '\t': case '\n': case '\f': case '\r':

break;

A digit is the beginning of a value; calc gathers up the digits that fol-
low the first one into a buffer, and uses AP_fromstr to convert the run
of digits to an AP_T:

〈cases 329〉+≡
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9': {

char buf[512];
〈gather up digits into buf 333〉
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Stack_push(sp, AP_fromstr(buf, 10, NULL));
break;

}

Each operator pops zero or more operands from the stack and pushes
zero or more results. Addition is typical:

〈cases 329〉+≡
case '+': {

〈pop x and y off the stack 330〉
Stack_push(sp, AP_add(x, y));
〈free x and y 330〉
break;

}

〈pop x and y off the stack 330〉≡
AP_T y = pop(), x = pop();

〈free x and y 330〉≡
AP_free(&x);
AP_free(&y);

It is easy to make the error of having two or more copies of one AP_T on
the stack, which makes it impossible to know which AP_Ts should be
freed. The code above shows the simple protocol that avoids this prob-
lem: The only “permanent” AP_Ts are those on the stack; all others are
freed by calling AP_free.

Subtraction and multiplication are similar in form to addition:

〈cases 329〉+≡
case '-': {

〈pop x and y off the stack 330〉
Stack_push(sp, AP_sub(x, y));
〈free x and y 330〉
break;

}
case '*': {

〈pop x and y off the stack 330〉
Stack_push(sp, AP_mul(x, y));
〈free x and y 330〉
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break;
}

Division and remainder are also simple, but they must guard against a
zero divisor.

〈cases 329〉+≡
case '/': {

〈pop x and y off the stack 330〉
if (AP_cmpi(y, 0) == 0) {

Fmt_fprint(stderr, "?/ by 0\n");
Stack_push(sp, AP_new(0));

} else
Stack_push(sp, AP_div(x, y));

〈free x and y 330〉
break;

}
case '%': {

〈pop x and y off the stack 330〉
if (AP_cmpi(y, 0) == 0) {

Fmt_fprint(stderr, "?%% by 0\n");
Stack_push(sp, AP_new(0));

} else
Stack_push(sp, AP_mod(x, y));

〈free x and y 330〉
break;

}

Exponentiation must guard against a nonpositive power:

〈cases 329〉+≡
case '^': {

〈pop x and y off the stack 330〉
if (AP_cmpi(y, 0) <= 0) {

Fmt_fprint(stderr, "?nonpositive power\n");
Stack_push(sp, AP_new(0));

} else
Stack_push(sp, AP_pow(x, y, NULL));

〈free x and y 330〉
break;

}
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Duplicating the value at the top of the stack is accomplished by pop-
ping it off the stack, so that underflow is detected, and pushing the value
and a copy of the value. The only way to copy an AP_T is to add zero to
it.

〈cases 329〉+≡
case 'd': {

AP_T x = pop();
Stack_push(sp, x);
Stack_push(sp, AP_addi(x, 0));
break;

}

Printing an AP_T is accomplished by associating AP_cvt with a format
code and using that code in a format string passed to Fmt_fmt; calc
uses D.

〈initialization 328〉+≡
Fmt_register('D', AP_fmt);

〈cases 329〉+≡
case 'p': {

AP_T x = pop();
Fmt_print("%D\n", x);
Stack_push(sp, x);
break;

}

Printing all the values on the stack reveals a weakness in the Stack
interface: There’s no way to access the values under the top one, or to
tell how many values are on the stack. A better stack interface might
include functions like Table_length and Table_map; without them,
calc must create a temporary stack, pour the contents of the main stack
onto the temporary stack, printing the values as it goes, and then pour
the values from the temporary stack back onto the main stack.

〈cases 329〉+≡
case 'f':

if (!Stack_empty(sp)) {
Stack_T tmp = Stack_new();
while (!Stack_empty(sp)) {
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AP_T x = pop();
Fmt_print("%D\n", x);
Stack_push(tmp, x);

}
while (!Stack_empty(tmp))

Stack_push(sp, Stack_pop(tmp));
Stack_free(&tmp);

}
break;

The remaining cases negate values, clear the stack, and quit:

〈cases 329〉+≡
case '~': {

AP_T x = pop();
Stack_push(sp, AP_neg(x));
AP_free(&x);
break;

}
case 'c': 〈clear the stack 333〉 break;
case 'q': 〈clean up and exit 329〉

〈clear the stack 333〉≡
while (!Stack_empty(sp)) {

AP_T x = Stack_pop(sp);
AP_free(&x);

}

calc deallocates the stacked AP_Ts as it clears the stack to avoid creat-
ing objects that are unreachable and whose storage could never be
deallocated.

The final chunk of calc reads a run of one or more digits into buf:

〈gather up digits into buf 333〉≡
{

int i = 0;
for ( ; c != EOF && isdigit(c); c = getchar(), i++)

if (i < (int)sizeof (buf) - 1)
buf[i] = c;

if (i > (int)sizeof (buf) - 1) {
i = (int)sizeof (buf) - 1;



334 ARBITRARY-PRECISION ARITHMETIC
Fmt_fprint(stderr,
"?integer constant exceeds %d digits\n", i);

}
buf[i] = 0;
if (c != EOF)

ungetc(c, stdin);
}

As this code shows, calc announces excessively long numbers and trun-
cates them.

18.3 Implementation

The implementation of the AP interface illustrates a typical use of the XP
interface. AP uses a sign-magnitude representation for signed numbers:
An AP_T points to a structure that carries the sign of the number and its
absolute value as an XP_T:

〈ap.c〉≡
#include <ctype.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include "assert.h"
#include "ap.h"
#include "fmt.h"
#include "xp.h"
#include "mem.h"

#define T AP_T

struct T {
int sign;
int ndigits;
int size;
XP_T digits;

};

〈macros 337〉
〈prototypes 336〉
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〈static functions 335〉
〈functions 335〉

sign is either 1 or −1. size is the number of digits allocated and pointed
to by digits; it can exceed ndigits, which is the number of digits in
use. That is, an AP_T represents the number given by the XP_T in dig-
its[0..ndigits-1].  AP_Ts are always normalized: Their most signifi-
cant digit is nonzero, unless the value is zero. Thus, ndigits is often
less than size. Figure 18.1 shows the layout of an 11-digit AP_T that is
equal to 751,702,468,129 on a little endian computer with 32-bit words
and 8-bit characters. The unused elements of the digits array are
shaded.

AP_Ts are allocated by

〈functions 335〉≡
T AP_new(long int n) {

return set(mk(sizeof (long int)), n);
}

which calls the static function mk to do the actual allocation; mk allocates
an AP_T capable of holding size digits and initializes it to zero.

〈static functions 335〉≡
static T mk(int size) {

T z = CALLOC(1, sizeof (*z) + size);

Figure 18.1 Little endian layout for an AP_T equal to 751,702,468,129

5

digits

size

ndigits

11

1sign

4 245 102 33

175



336 ARBITRARY-PRECISION ARITHMETIC
assert(size > 0);
z->sign = 1;
z->size = size;
z->ndigits = 1;
z->digits = (XP_T)(z + 1);
return z;

}

There are two representations for zero in a sign-magnitude representa-
tion; by convention, AP uses only the positive representation, as the code
in mk suggests.

AP_new calls the static function set to initialize an AP_T to the value
of a long int, and, as usual, set handles the most negative long int as a
special case:

〈static functions 335〉+≡
static T set(T z, long int n) {

if (n == LONG_MIN)
XP_fromint(z->size, z->digits, LONG_MAX + 1UL);

else if (n < 0)
XP_fromint(z->size, z->digits, -n);

else
XP_fromint(z->size, z->digits, n);

z->sign = n < 0 ? -1 : 1;
return normalize(z, z->size);

}

The assignment to z->sign is the idiom that ensures that the sign value
is either 1 or −1, and that the sign of zero is one. An XP_T is unnormal-
ized, because its most significant digit can be zero. When an AP function
forms an XP_T that might be unnormalized, it calls normalize to fix it
by computing the correct ndigits field:

〈static functions 335〉+≡
static T normalize(T z, int n) {

z->ndigits = XP_length(n, z->digits);
return z;

}

〈prototypes 336〉≡
static T normalize(T z, int n);
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An AP_T is deallocated by

〈functions 335〉+≡
void AP_free(T *z) {

assert(z && *z);
FREE(*z);

}

AP_new is the only way to allocate an AP_T, so it is safe for AP_free to
“know” that the space for the structure and the digit array were allocated
with a single allocation.

18.3.1 Negation and Multiplication

Negation is the easiest arithmetic operation to implement, and it illus-
trates a recurring problem with a sign-magnitude representation:

〈functions 335〉+≡
T AP_neg(T x) {

T z;

assert(x);
z = mk(x->ndigits);
memcpy(z->digits, x->digits, x->ndigits);
z->ndigits = x->ndigits;
z->sign = iszero(z) ? 1 : -x->sign;
return z;

}

〈macros 337〉≡
#define iszero(x) ((x)->ndigits==1 && (x)->digits[0]==0)

Negating x simply copies the value and flips the sign, except when the
value is zero. The macro iszero takes advantage of the constraint that
AP_Ts are normalized: The value zero has only one digit.

The magnitude of x•y is , and it might have as many digits as
the sum of the number of digits in x and y. The result is positive when x
and y have the same sign or when x or y is zero, and negative otherwise.
A sign is −1 or 1, so the comparison

x •y
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〈x and y have the same sign 338〉≡
((x->sign^y->sign) == 0)

is true when x and y have the same sign and false otherwise. AP_mul calls
XP_mul to compute  and computes the sign itself:

〈functions 335〉+≡
T AP_mul(T x, T y) {

T z;

assert(x);
assert(y);
z = mk(x->ndigits + y->ndigits);
XP_mul(z->digits, x->ndigits, x->digits, y->ndigits,

y->digits);
normalize(z, z->size);
z->sign = iszero(z)

|| 〈x and y have the same sign 338〉 ? 1 : -1;
return z;

}

Recall that XP_mul computes z = z + x•y, and that mk initializes z to both
a normalized and an unnormalized zero.

18.3.2 Addition and Subtraction

Addition is more complicated, because it may require subtraction,
depending on the signs and values of x and y. The following table sum-
marizes the cases.

 is equivalent to , when x and y are nonegative, so the cases
on the diagonal can both be handled by computing  and setting

x • y

y 0< y 0≥

x 0< x y+( )–
y x– if y x≥
x y–( )– if y x<

x 0≥ x y– if x y>
y x–( )– if x y≤

x y+

x y+ x y+
x y+
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the sign to the sign of x. The result may have one more digit than the
longest of x and y.

〈functions 335〉+≡
T AP_add(T x, T y) {

T z;

assert(x);
assert(y);
if (〈x and y have the same sign 338〉) {

z = add(mk(maxdigits(x,y) + 1), x, y);
z->sign = iszero(z) ? 1 : x->sign;

} else
〈set z to x+y when x and y have different signs 340〉

return z;
}

〈macros 337〉+≡
#define maxdigits(x,y) ((x)->ndigits > (y)->ndigits ? \

(x)->ndigits : (y)->ndigits)

add calls XP_add to do the actual addition:

〈static functions 335〉+≡
static T add(T z, T x, T y) {

int n = y->ndigits;

if (x->ndigits < n)
return add(z, y, x);

else if (x->ndigits > n) {
int carry = XP_add(n, z->digits, x->digits,

y->digits, 0);
z->digits[z->size-1] = XP_sum(x->ndigits - n,

&z->digits[n], &x->digits[n], carry);
} else

z->digits[n] = XP_add(n, z->digits, x->digits,
y->digits, 0);

return normalize(z, z->size);
}
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The first test in add ensures that x is the longer operand. If x is longer
than y, XP_add computes the n-digit sum in z->digits[0..n-1] and
returns the carry. The sum of this carry and x->digits[n..x->ndig-
its-1] becomes z->digits[n..z->size-1]. If x and y have the same
number of digits, XP_add computes the n-digit sum as in the previous
case, and the carry is z’s most significant digit.

The other addition cases can be simplified, too. When , , and
, the magnitude of  is , and the sign is negative. When

, , and , the magnitude of  is also , but the
sign is positive. In both cases, the sign of the result is the same as the
sign of x. sub, described below, does the subtraction, and cmp compares

and . The result may have as many digits as x.

〈set z to x+y when x and y have different signs 340〉≡
if (cmp(x, y) > 0) {

z = sub(mk(x->ndigits), x, y);
z->sign = iszero(z) ? 1 : x->sign;

}

When , , and , the magnitude of  is , and the
sign is positive. When , , and , the magnitude of  is
also , but the sign is negative. In both of these cases, the sign of
the result is the opposite of the sign of x, and it may have as many digits
as y.

〈set z to x+y when x and y have different signs 340〉+≡
else {

z = sub(mk(y->ndigits), y, x);
z->sign = iszero(z) ? 1 : -x->sign;

}

Subtraction benefits from a similar analysis. The following table lays
out the cases.

x 0< y 0≥
x y> x y+ x y–
x 0≥ y 0< x y> x y+ x y–

x y

x 0< y 0≥ x y≤ x y+ y x–
x 0≥ y 0< x y≤ x y+

y x–

y 0< y 0≥

x 0< x y–( )– if x y>
y x– if x y≤

x y+( )–

x 0≥ x y+
x y– if x y>
y x–( )– if x y≤
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Here, the off-diagonal cases are the easy ones, and both can be handled
by computing  and setting the sign of the result to the sign of x:

〈functions 335〉+≡
T AP_sub(T x, T y) {

T z;

assert(x);
assert(y);
if (!〈x and y have the same sign 338〉) {

z = add(mk(maxdigits(x,y) + 1), x, y);
z->sign = iszero(z) ? 1 : x->sign;

} else
〈set z to x−y when x and y have the same sign 341〉

return z;
}

The diagonal cases depend on the relative values of x and y. When
, the magnitude of  is  and the sign is the same as the

sign of x; when , the magnitude of  is  and the sign is
the opposite of the sign of x.

〈set z to x−y when x and y have the same sign 341〉≡
if (cmp(x, y) > 0) {

z = sub(mk(x->ndigits), x, y);
z->sign = iszero(z) ? 1 : x->sign;

} else {
z = sub(mk(y->ndigits), y, x);
z->sign = iszero(z) ? 1 : -x->sign;

}

Like add, sub calls the XP functions to implement subtraction; y never
exceeds x.

〈static functions 335〉+≡
static T sub(T z, T x, T y) {

int borrow, n = y->ndigits;

borrow = XP_sub(n, z->digits, x->digits,
y->digits, 0);

if (x->ndigits > n)

x y+

x y> x y– x y–
x y≤ x y– y x–
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borrow = XP_diff(x->ndigits - n, &z->digits[n],
&x->digits[n], borrow);

assert(borrow == 0);
return normalize(z, z->size);

}

When x is longer than y, the call to XP_sub computes the n-digit differ-
ence in z->digits[0..n-1] and returns the borrow. The difference
between this borrow and x->digits[n..x->ndigits-1] becomes
z->digits[n..z->size-1], and the final borrow is zero because 
in all calls to sub. If x and y have the same number of digits, XP_sub
computes the n-digit difference as in the previous case, but there is no
borrow to propagate.

18.3.3 Division

Division is like multiplication, but is complicated by the truncation rules.
When x and y have the same sign, the quotient is  and is positive,
and the remainder is mod . When x and y have different signs, the
quotient is negative; its magnitude is  when mod  is zero and

 when mod  is nonzero. The remainder is mod  when
that value is zero and  − ( mod ) when mod  is nonzero. The
remainder is thus always positive. The quotient and remainder might
have as many digits as x and y, respectively.

〈functions 335〉+≡
T AP_div(T x, T y) {

T q, r;

〈q ← x/y, r ← x mod y 343〉
if (!〈x and y have the same sign 338〉 && !iszero(r)) {

int carry = XP_sum(q->size, q->digits,
q->digits, 1);

assert(carry == 0);
normalize(q, q->size);

}
AP_free(&r);
return q;

}

x y≥

x y⁄
x y

x y⁄ x y
x y⁄ 1+ x y x y

y x y x y
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〈q ← x/y, r ← x mod y 343〉≡
assert(x);
assert(y);
assert(!iszero(y));
q = mk(x->ndigits);
r = mk(y->ndigits);
{

XP_T tmp = ALLOC(x->ndigits + y->ndigits + 2);
XP_div(x->ndigits, q->digits, x->digits,

y->ndigits, y->digits, r->digits, tmp);
FREE(tmp);

}
normalize(q, q->size);
normalize(r, r->size);
q->sign = iszero(q)

|| 〈x and y have the same sign 338〉 ? 1 : -1;

AP_div doesn’t bother adjusting the remainder when x and y have dif-
ferent signs because it discards the remainder. AP_mod does just the
opposite: It adjusts only the remainder and discards the quotient.

〈functions 335〉+≡
T AP_mod(T x, T y) {

T q, r;

〈q ← x/y, r ← x mod y 343〉
if (!〈x and y have the same sign 338〉 && !iszero(r)) {

int borrow = XP_sub(r->size, r->digits,
y->digits, r->digits, 0);

assert(borrow == 0);
normalize(r, r->size);

}
AP_free(&q);
return r;

}

18.3.4 Exponentiation

AP_pow returns  when p, the third argument, is null. When p is non-
null, AP_pow returns  mod p.

xy

xy( )
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〈functions 335〉+≡
T AP_pow(T x, T y, T p) {

T z;

assert(x);
assert(y);
assert(y->sign == 1);
assert(!p || p->sign==1 && !iszero(p) && !isone(p));
〈special cases 344〉
if (p)

〈  mod p 346〉
else

〈  345〉
return z;

}

〈macros 337〉+≡
#define isone(x) ((x)->ndigits==1 && (x)->digits[0]==1)

To compute , it’s tempting to set z to one and multiply it by x, y
times. The problem is that if y is big, say, 200 decimal digits, this
approach takes much longer than the age of the universe. Mathematical
rules help simplify the computation:

These rules permit  to be computed by calling AP_pow recursively and
multiplying and squaring the result. The depth of the recursion (and
hence the number operations) is proportional to lg y. The recursion bot-
toms out when x or y is zero or one, because , , , and

. The first three of these special cases are handled by

〈special cases 344〉≡
if (iszero(x))

return AP_new(0);
if (iszero(y))

return AP_new(1);
if (isone(x))

return AP_new(〈y is even 345〉 ? 1 : x->sign);

z xy←

z xy←

z xy=

z
xy 2⁄( )

2
xy 2⁄( ) xy 2⁄( )= if x is even

x xy 1–⋅ xy 2⁄( ) xy 2⁄( )x= otherwise



=

xy

0
y

0= 1
y

1= x0
1=

x1 x=
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〈y is even 345〉≡
(((y)->digits[0]&1) == 0)

The recursive case implements the fourth special case as well as the two
cases described by the equation above:

〈  345〉≡
if (isone(y))

z = AP_addi(x, 0);
else {

T y2 = AP_rshift(y, 1), t = AP_pow(x, y2, NULL);
z = AP_mul(t, t);
AP_free(&y2);
AP_free(&t);
if (!〈y is even 345〉) {

z = AP_mul(x, t = z);
AP_free(&t);

}
}

y is positive, so shifting it right one bit computes . The intermediate
results — , , and  — are deallocated to avoid creat-
ing unreachable storage.

When p is nonnull, AP_pow computes mod p. When , we can’t
actually compute  because it might be too big; for example, if x is 10
decimal digits and y is 200,  has more digits than atoms in the uni-
verse; mod p, however, is a much smaller number. The following
mathematical rule about modular multiplication can be used to avoid
numbers that are too big:

(x•y) mod p = ((x mod p)•(y mod p)) mod p.

AP_mod and the static function mulmod collaborate to implement this
rule. mulmod uses AP_mod and AP_mul to implement x•y mod p, taking
care to deallocate the temporary product x•y.

〈static functions 335〉+≡
static T mulmod(T x, T y, T p) {

T z, xy = AP_mul(x, y);

z xy←

y 2⁄
y 2⁄ xy 2⁄ xy 2⁄( ) xy 2⁄( )

xy p 1>
xy

xy

xy
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z = AP_mod(xy, p);
AP_free(&xy);
return z;

}

The AP_pow code when p is nonnull is nearly identical to the easier case
when p is null, except that mulmod is called for the multiplications, p is
passed to the recursive call to AP_pow, and x is reduced mod p when y is
odd.

〈  mod p 346〉≡
if (isone(y))

z = AP_mod(x, p);
else {

T y2 = AP_rshift(y, 1), t = AP_pow(x, y2, p);
z = mulmod(t, t, p);
AP_free(&y2);
AP_free(&t);
if (!〈y is even 345〉) {

z = mulmod(y2 = AP_mod(x, p), t = z, p);
AP_free(&y2);
AP_free(&t);

}
}

18.3.5 Comparisons

The outcome of comparing x and y depends on their signs and magni-
tudes. AP_cmp returns a value less than zero, equal to zero, or greater
than zero when , , or . When x and y have different signs,
AP_cmp can simply return the sign of x; otherwise, it must compare their
magnitudes:

〈functions 335〉+≡
int AP_cmp(T x, T y) {

assert(x);
assert(y);
if (!〈x and y have the same sign 338〉)

return x->sign;
else if (x->sign == 1)

return cmp(x, y);

z xy←

x y< x y= x y>
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else
return cmp(y, x);

}

When x and y are positive,  if , and so on. When x and y are
negative, however,  if , which is why the arguments are
reversed in the second call to cmp. XP_cmp does the actual comparison,
after cmp checks for operands of different lengths:

〈static functions 335〉+≡
static int cmp(T x, T y) {

if (x->ndigits != y->ndigits)
return x->ndigits - y->ndigits;

else
return XP_cmp(x->ndigits, x->digits, y->digits);

}

〈prototypes 336〉+≡
static int cmp(T x, T y);

18.3.6 Convenience Functions

The six convenience functions take an AP_T as their first argument and a
signed long as their second. Each initializes a temporary AP_T by passing
the long to set, then calls the more general operation. AP_addi illus-
trates this approach:

〈functions 335〉+≡
T AP_addi(T x, long int y) {

〈declare and initialize t 347〉
return AP_add(x, set(&t, y));

}

〈declare and initialize t 347〉≡
unsigned char d[sizeof (unsigned long)];
struct T t;
t.size = sizeof d;
t.digits = d;

The second chunk above allocates the temporary AP_T and its associated
digits array on the stack by declaring the appropriate locals. This is pos-

x y< x y<
x y< x y>
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sible because the size of the digits array is bounded by the number of
bytes in an unsigned long.

Four of the remaining convenience functions have the same pattern:

〈functions〉+≡
T AP_subi(T x, long int y) {

〈declare and initialize t 347〉
return AP_sub(x, set(&t, y));

}

T AP_muli(T x, long int y) {
〈declare and initialize t 347〉
return AP_mul(x, set(&t, y));

}

T AP_divi(T x, long int y) {
〈declare and initialize t 347〉
return AP_div(x, set(&t, y));

}

int AP_cmpi(T x, long int y) {
〈declare and initialize t 347〉
return AP_cmp(x, set(&t, y));

}

AP_modi is the oddball, because it returns a long instead of an AP_T or
int, and because it must discard the AP_T returned by AP_mod.

〈functions 335〉+≡
long int AP_modi(T x, long int y) {

long int rem;
T r;

〈declare and initialize t 347〉
r = AP_mod(x, set(&t, y));
rem = XP_toint(r->ndigits, r->digits);
AP_free(&r);
return rem;

}
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18.3.7 Shifting

The two shift functions call their XP relatives to shift their operands. For
AP_lshift, the result has  more digits than the operand and the
same sign as the operand.

〈functions 335〉+≡
T AP_lshift(T x, int s) {

T z;

assert(x);
assert(s >= 0);
z = mk(x->ndigits + ((s+7)&~7)/8);
XP_lshift(z->size, z->digits, x->ndigits,

x->digits, s, 0);
z->sign = x->sign;
return normalize(z, z->size);

}

For AP_rshift, the result has  fewer bytes, and it is possible that
the result is zero, in which case its sign must be positive.

T AP_rshift(T x, int s) {
assert(x);
assert(s >= 0);
if (s >= 8*x->ndigits)

return AP_new(0);
else {

T z = mk(x->ndigits - s/8);
XP_rshift(z->size, z->digits, x->ndigits,

x->digits, s, 0);
normalize(z, z->size);
z->sign = iszero(z) ? 1 : x->sign;
return z;

}
}

The if statement handles the case when s specifies a shift amount
greater than or equal to the number of bits in x.

s 8⁄

s 8⁄
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18.3.8 String and Integer Conversions

AP_toint(x) returns a long int with the same sign as x and with a mag-
nitude equal to |x| mod (LONG_MAX+1).

〈functions 335〉+≡
long int AP_toint(T x) {

unsigned long u;

assert(x);
u = XP_toint(x->ndigits, x->digits)%(LONG_MAX + 1UL);
if (x->sign == -1)

return -(long)u;
else

return  (long)u;
}

The rest of the AP functions convert AP_Ts to strings and vice versa.
AP_fromstr converts a string to an AP_T; it accepts a signed number
with the following syntax.

number = {  white }  [ - | + ] {  white }  digit {  digit }

where white denotes a white-space character and digit is a digit character
in the specified base, which must be from two to 36 inclusive. For bases
that exceed 10, letters specify the digits that exceed nine. AP_fromstr
calls XP_fromstr, and it stops scanning its string argument when it
encounters an illegal character or the null character.

〈functions 335〉+≡
T AP_fromstr(const char *str, int base, char **end) {

T z;
const char *p = str;
char *endp, sign = '\0';
int carry;

assert(p);
assert(base >= 2 && base <= 36);
while (*p && isspace(*p))

p++;
if (*p == '-' || *p == '+')
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sign = *p++;
〈z ← 0 351〉
carry = XP_fromstr(z->size, z->digits, p,

base, &endp);
assert(carry == 0);
normalize(z, z->size);
if (endp == p) {

endp = (char *)str;
z = AP_new(0);

} else
z->sign = iszero(z) || sign != '-' ? 1 : -1;

if (end)
*end = (char *)endp;

return z;
}

AP_fromstr passes the address of endp to XP_fromstr because it needs
to know what terminated the scan so it can check for illegal inputs. If
end is nonnull, AP_fromstr sets *end to endp.

The number of bits in z is n•lg base where n is the number of digits in
the string, and thus z’s XP_T must have a digits array of at least m =
(n•lg base)/8 bytes. Suppose that base is ; then m = n•lg /8 =
k•n/8. Thus, if we choose k so that  is the smallest power of two equal
to or greater than base, z needs  digits. k is a conservative esti-
mate of the number of bits each digit in base represents. For example,
when base is 10, each digit carries lg 10 ≈ 3.32 bits, and k is four. k
ranges from one, when base is two, to six, when base is 36.

〈z ← 0 351〉≡
{

const char *start;
int k, n = 0;
for ( ; *p == '0' && p[1] == '0'; p++)

;
start = p;
for ( ; 〈*p is a digit in base 352〉; p++)

n++;
for (k = 1; (1<<k) < base; k++)

;
z = mk(((k*n + 7)&~7)/8);

2
k

2
k( )

2
k

k•n 8⁄
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p = start;
}

〈*p is a digit in base 352〉≡
(  '0' <= *p && *p <= '9' && *p < '0' + base
|| 'a' <= *p && *p <= 'z' && *p < 'a' + base - 10
|| 'A' <= *p && *p <= 'Z' && *p < 'A' + base - 10)

The first for loop in 〈z ← 0 351〉 skips over leading zeros.
AP_tostr can use a similar trick to approximate the number of char-

acters, n, needed for the string representation of x in base. The number
of digits in x’s digits array is m = (n•lg base)/8. If we choose k so that 
is the largest power of two less than or equal to base, then m =

 = k•n/8, and n is , plus one for the terminating null
character. Here, k underestimates the number of bits each digit in base
represents so that n will be a conservative estimate of the number of dig-
its required. For example, when base is 10, the digits in x each yield
8 /lg 10 ≈ 2.41 decimal digits, and k is three, so space for = 3 deci-
mal digits is allocated for each digit in x. k ranges from five, when base
is 36, to one, when base is two.

〈size ← number of characters in str 352〉≡
{

int k;
for (k = 5; (1<<k) > base; k--)

;
size = (8*x->ndigits)/k + 1 + 1;
if (x->sign == -1)

size++;
}

AP_tostr lets XP_tostr compute the string representation of x:

〈functions 335〉+≡
char *AP_tostr(char *str, int size, int base, T x) {

XP_T q;

assert(x);
assert(base >= 2 && base <= 36);
assert(str == NULL || size > 1);
if (str == NULL) {

2
k

n•lg 2
k( ) 8⁄ 8•m k⁄

8 3⁄
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〈size ← number of characters in str 352〉
str = ALLOC(size);

}
q = ALLOC(x->ndigits);
memcpy(q, x->digits, x->ndigits);
if (x->sign == -1) {

str[0] = '-';
XP_tostr(str + 1, size - 1, base, x->ndigits, q);

} else
XP_tostr(str, size, base, x->ndigits, q);

FREE(q);
return str;

}

The last AP function is AP_fmt, which is a Fmt-style conversion func-
tion for printing AP_Ts. It uses AP_tostr to format the value in decimal
and calls Fmt_putd to emit it.

〈functions 335〉+≡
void AP_fmt(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision) {
T x;
char *buf;

assert(app && flags);
x = va_arg(*app, T);
assert(x);
buf = AP_tostr(NULL, 0, 10, x);
Fmt_putd(buf, strlen(buf), put, cl, flags,

width, precision);
FREE(buf);

}

Further Reading

AP_Ts are similar to the “bignums” in some programming languages.
Recent versions of Icon, for example, have only one integer type, but use
arbitrary-precision arithmetic as necessary to represent the values com-
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puted. Programmers don’t need to distinguish between machine integers
and arbitrary-precision integers.

Facilities for arbitrary-precision arithmetic are often provided as a
standard library or package. LISP systems have long included bignum
packages, for example, and there’s a similar package for ML.

Most symbolic arithmetic systems do arbitrary-precision arithmetic,
because that’s their purpose. Mathematica (Wolfram 1988), for example,
provides integers of arbitrary length and rationals in which the numera-
tor and denominator are both arbitrary-length integers. Maple V (Char et
al. 1992), another symbolic computation system, has similar facilities.

Exercises

18.1 AP_div and AP_mod allocate and deallocate temporary space every
time they’re called. Revise them so that they share tmp, allocate it
once, keep track of its size, and expand it when necessary.

18.2 The recursive algorithm used in AP_pow is equivalent to the famil-
liar iterative algorithm that computes z =  by repeatedly squar-
ing and multiplying (see Section 4.6.3 of Knuth 1981):

z ← x, u ← 1
while y > 1 do

if y is odd then u ← u•z
z ← 
y ← y/2

z ← u•z

Iteration is usually faster than recursion, but the real advantage of
this approach is that it allocates less space for intermediate val-
ues. Reimplement AP_pow using this algorithm and measure the
time and space improvements. How large do x and y have to be
before this algorithm is noticeably better than the recursive one?

18.3 Implement AP_ceil(AP_T x, AP_T y) and AP_floor(AP_T x,
AP_T y), which return the ceiling and floor of . Be sure to
specify what happens when x and y have different signs.

18.4 The AP interface is “noisy” — there are lots of parameters and it is
easy to confuse the input and output parameters. Design and

xy

z2

x y⁄
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implement a new interface that uses a Seq_T as a stack from
which the functions fetch operands and store results. Focus on
making the interface as clean as possible, but don’t omit impor-
tant functionality.

18.5 Implement an AP function that generates random numbers, uni-
formly distributed in a specified range.

18.6 Design an interface whose functions do arithmetic modulo n for
an arbitrary n, and thus accept and return values in the set of inte-
gers from zero to n−1. Be careful about division: It’s defined only
when this set is a finite field, which is when n is a prime.

18.7 Multiplying two n-digit numbers takes time proportional to 
(see page 308). A. Karatsuba showed (in 1962) how to multiply in
time proportional to  (see Section 4.3 in Geddes, Czapor, and
Labahn 1992 and Section 4.3.3 in Knuth 1981). An n-digit number
x can be split into a sum of its most significant and least signifi-
cant n/2 bits; that is, . Thus, the product  can be
written as

,

which takes four multiplications and one addition. The coefficient
of the middle term can be rewritten as

.

The product  thus requires only three multiplications ( , ,
and ), two subtractions, and two additions. When n is
large, saving one -digit multiplication reduces the execution
time of multiplication at the expense of space for the intermediate
values. Implement a recursive version of AP_mul that uses Karat-
suba’s algorithm, and determine for what value of n it is notice-
ably faster than the naive algorithm. Use XP_mul for the
intermediate computations.

n2

n1.58
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MULTIPLE-PRECISION 

ARITHMETIC

he last of the three arithmetic interfaces, MP, exports functions
that implement multiple-precision arithmetic on unsigned and
two’s-complement integers. Like XP, MP reveals its representation

for n-bit integers, and the MP functions operate on integers of a given
size. Unlike XP, the lengths of MP’s integers are given in bits, and MP’s
functions implement both signed and unsigned arithmetic. Like the AP
functions, the MP functions enforce the usual suite of checked runtime
errors.
MP is intended for applications that need extended-precision arith-

metic, but want finer control over allocations, need both unsigned and
signed operations, or must mimic two’s-complement n-bit arithmetic.
Examples include compilers and applications that use encryption. Some
modern encryption algorithms involve manipulating fixed-precision
integers with hundreds of digits.

Some compilers must use multiple-precision integers. A cross-
compiler runs on platform X and generates code for platform Y. If Y has
integers bigger than X, the compiler can use MP to manipulate Y-sized
integers. Also, compilers must use multiple-precision arithmetic to con-
vert floating-point constants to the closest floating-point values they
specify.

T
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19.1 Interface

The MP interface is large — 49 functions and two exceptions — because it
exports a complete suite of arithmetic functions on n-bit signed and
unsigned integers.

〈mp.h〉≡
#ifndef MP_INCLUDED
#define MP_INCLUDED
#include <stdarg.h>
#include <stddef.h>
#include "except.h"

#define T MP_T
typedef unsigned char *T;

〈exported exceptions 359〉
〈exported functions 358〉

#undef T
#endif

Like XP, MP reveals that an n-bit integer is represented by  bytes,
stored least significant byte first. MP uses the two’s-complement repre-
sentation for signed integers; bit n − 1 is the sign bit.

Unlike the XP functions, the MP functions implement the usual
checked runtime errors; for example, it is a checked runtime error to
pass a null MP_T to any function in this interface. However, it is an
unchecked runtime error to pass an MP_T that is too small to hold an n-
bit integer.
MP is initialized automatically to do arithmetic on 32-bit integers.

Calling

〈exported functions 358〉≡
extern int MP_set(int n);

changes MP so that subsequent calls do n-bit arithmetic. MP_set returns
the previous size. It is a checked runtime error for n to be less than two.
Once initialized, most applications use only one size of extended integer.
For example, a cross-compiler might manipulate constants using 128-bit

n 8⁄
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arithmetic. This design caters to these kinds of applications; it simplifies
the use of the other MP functions, and simplifies their argument lists as
well. Omitting n is the obvious simplification, but a more important sim-
plification is that there are no restrictions on the source and destination
arguments: The same MP_T can always appear as both a source and a
destination. Eliminating these restrictions is possible because the tempo-
rary space needed by some of the functions depends only on n and thus
can be allocated once by MP_set.

This design also avoids allocations. MP_set can raise Mem_Failed, but
only four of the other 48 MP functions do allocations. One of those is

〈exported functions 358〉+≡
extern T MP_new(unsigned long u);

which allocates an MP_T of the appropriate size, initializes it to u, and
returns it.

〈exported functions 358〉+≡
extern T MP_fromint (T z, long v);
extern T MP_fromintu(T z, unsigned long u);

set z to v or u and return z. MP_new, MP_fromint, and MP_fromintu
raise

〈exported exceptions 359〉≡
extern const Except_T MP_Overflow;

if u or v don’t fit in n bits. MP_new and MP_fromintu raise MP_Overflow
when u exceeds , and MP_fromint raises MP_Overflow when v is
less than  or exceeds .

All of the MP functions compute their results before they raise an
exception. The extraneous bits are simply discarded. For example,

MP_T z;
MP_set(8);
z = MP_new(0);
MP_fromintu(z, 0xFFF);

sets z to 0xFF and raises MP_Overflow. Clients can use a TRY-EXCEPT
statement to ignore the exception when that is the appropriate action.
For example,

2
n

1–
2
n 1–

– 2
n 1–

1–
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MP_T z;
MP_set(8);
z = MP_new(0);
TRY

MP_fromintu(z, 0xFFF);
EXCEPT(MP_Overflow) ;
END_TRY;

sets z to 0xFF and discards the overflow exception.
This convention does not apply to

〈exported functions 358〉+≡
extern unsigned long MP_tointu(T x);
extern          long MP_toint (T x);

which return the value of x as a signed or unsigned long. These functions
raise MP_Overflow when x doesn’t fit in the return type, and there’s no
way to capture the result when an exception occurs. Clients can use

〈exported functions 358〉+≡
extern T MP_cvt (int m, T z, T x);
extern T MP_cvtu(int m, T z, T x);

to convert x to an MP_T of the appropriate size. MP_cvt and MP_cvtu
convert x to an m-bit signed or unsigned MP_T in z and return z. They
raise MP_Overflow when x doesn’t fit in the m-bit destination, but they
set z before doing so. Thus,

unsigned char z[sizeof (unsigned)];
TRY

MP_cvtu(8*sizeof (unsigned), z, x);
EXCEPT(MP_Overflow) ;
END_TRY;

sets z to the least significant 8•sizeof (unsigned) bits from x regard-
less of the size of x.

When m exceeds the number of bits in x, MP_cvtu extends the result
with zeros, and MP_cvt extends the result with x’s sign bit. It is a
checked runtime error for m to be less than two, and it is an unchecked
runtime error for z to be too small to hold an m-bit integer.

The arithmetic functions are
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〈exported functions 358〉+≡
extern T MP_add (T z, T x, T y);
extern T MP_sub (T z, T x, T y);
extern T MP_mul (T z, T x, T y);
extern T MP_div (T z, T x, T y);
extern T MP_mod (T z, T x, T y);
extern T MP_neg (T z, T x);

extern T MP_addu(T z, T x, T y);
extern T MP_subu(T z, T x, T y);
extern T MP_mulu(T z, T x, T y);
extern T MP_divu(T z, T x, T y);
extern T MP_modu(T z, T x, T y);

Those with names ending in u do unsigned arithmetic; the others do
two’s-complement signed arithmetic. Overflow semantics are the only
difference between the unsigned and signed operations, as detailed
below. MP_add, MP_sub, MP_mul, MP_div, and MP_mod and their unsigned
counterparts compute z = x + y, z = x − y, z = x•y, z = x/y, and z =
x mod y, respectively, and return z. Italics denote the values of x, y, and
z.  MP_neg sets to z to the negative of x and returns z. If x and y have dif-
ferent signs, MP_div and MP_mod truncate toward minus infinity; thus x
mod y is always positive.

All these functions, except MP_divu and MP_modu, raise MP_Overflow
if the result does not fit. MP_subu raises MP_Overflow when x < y, and
MP_sub raises MP_Overflow when x and y have different signs and the
sign of the result is different from x’s sign. MP_div, MP_divu, MP_mod,
and MP_modu raise

〈exported exceptions 359〉+≡
extern const Except_T MP_Dividebyzero;

when y is zero.

〈exported functions 358〉+≡
extern T MP_mul2u(T z, T x, T y);
extern T MP_mul2 (T z, T x, T y);

return double-length products: They both compute z = x•y, where z has
2n bits, and return z. Thus, the result cannot overflow. It is an
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unchecked runtime error for z to be too small to hold 2n bits. Note that
since z must accommodate 2n bits, it cannot be allocated by MP_new.

The convenience functions accept an immediate unsigned long or long
for their second operand:

〈exported functions 358〉+≡
extern T MP_addi (T z, T x, long y);
extern T MP_subi (T z, T x, long y);
extern T MP_muli (T z, T x, long y);
extern T MP_divi (T z, T x, long y);

extern T MP_addui(T z, T x, unsigned long y);
extern T MP_subui(T z, T x, unsigned long y);
extern T MP_mului(T z, T x, unsigned long y);
extern T MP_divui(T z, T x, unsigned long y);

extern          long MP_modi (T x,          long y);
extern unsigned long MP_modui(T x, unsigned long y);

These functions are equivalent to their more general counterparts when
their second operands are initialized to y, and they raise similar excep-
tions. For example,

MP_T z, x;
long y;
MP_muli(z, x, y);

is equivalent to

MP_T z, x;
long y;
{

MP_T t = MP_new(0);
int overflow = 0;
TRY

MP_fromint(t, y);
EXCEPT(MP_Overflow)

overflow = 1;
END_TRY;
MP_mul(z, x, t);
if (overflow)
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RAISE(MP_Overflow);
}

The convenience functions do no allocations, however. Notice that these
convenience functions, including MP_divui and MP_modui, raise
MP_Overflow if y is too big, but they do so after computing z.

〈exported functions 358〉+≡
extern int MP_cmp  (T x, T y);
extern int MP_cmpi (T x, long y);

extern int MP_cmpu (T x, T y);
extern int MP_cmpui(T x, unsigned long y);

compare x and y and return a value less than zero, equal to zero, or
greater than zero, if, respectively x < y, x = y, or x > y. MP_cmpi and
MP_cmpui don’t insist that y fit in an MP_T; they simply compare x and y.

The following functions treat their input MP_Ts as strings of n bits:

〈exported functions 358〉+≡
extern T MP_and (T z, T x, T y);
extern T MP_or  (T z, T x, T y);
extern T MP_xor (T z, T x, T y);
extern T MP_not (T z, T x);

extern T MP_andi(T z, T x, unsigned long y);
extern T MP_ori (T z, T x, unsigned long y);
extern T MP_xori(T z, T x, unsigned long y);

MP_and, MP_or, MP_xor and their immmediate counterparts set z to the
bitwise AND, inclusive OR, and exclusive OR of x and y and return z.
MP_not sets z to the one’s complement of x and returns z. These func-
tions never raise exceptions, and the convenience variants ignore the
overflow that would usually occur when y is too big. For example,

MP_T z, x;
unsigned long y;
MP_andi(z, x, y);

is equivalent to
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MP_T z, x;
unsigned long y;
{

MP_T t = MP_new(0);
TRY 

MP_fromintu(t, y);
EXCEPT(MP_Overflow) ;
END_TRY;
MP_and(z, x, t);

}

None of these functions do any allocations, however.
The three shift functions

〈exported functions 358〉+≡
extern T MP_lshift(T z, T x, int s);
extern T MP_rshift(T z, T x, int s);
extern T MP_ashift(T z, T x, int s);

implement logical and arithmetic shifts. MP_lshift sets z to x shifted
left s bits, and MP_rshift sets z to x shifted right s bits. Both functions
fill the vacated bits with zeros and return z. MP_ashift is like
MP_rshift, but the vacated bits are filled with x’s sign bit. It is a checked
runtime error for s to be negative.

The following functions convert between MP_Ts and strings.

〈exported functions 358〉+≡
extern T     MP_fromstr(T z, const char *str,

int base, char **end);
extern char *MP_tostr  (char *str, int size,

int base, T x);
extern void  MP_fmt    (int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision);

extern void  MP_fmtu   (int code, va_list *app,
int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision);

MP_fromstr interprets the string in str as an unsigned integer in base,
sets z to that integer, and returns z. It ignores leading white space, and
consumes one or more digits in base. For bases greater than 10, the
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lowercase and uppercase letters specify the digits beyond nine.
MP_fromstr is like strtoul: If end is nonnull, MP_fromstr sets *end to
the address of the character that terminated the scan. If str does not
specify a valid integer, MP_fromstr sets *end to str, if end is nonnull,
and returns null. MP_fromstr raises MP_Overflow if the string in str
specifies an integer that is too big. It is a checked runtime error for str
to be null, or for base to be less than two or more than 36.
MP_tostr fills str[0..size-1] with a null-terminated string repre-

senting x in base, and returns str. If str is null, MP_tostr ignores size
and allocates the necessary string; it is the client’s responsibility to
deallocate the string. It is a checked runtime error for str to be nonnull,
for size to be too small to hold the null-terminated result, or for base to
be less than two or more than 36. When str is null, MP_tostr can raise
Mem_Failed.
MP_fmt and MP_fmtu are Fmt-style conversion functions for printing

MP_Ts. Both consume an MP_T and a base; MP_fmt converts the signed
MP_T to a string using the same conventions as printf’s %d conversion,
and MP_fmtu converts the unsigned MP_T using conventions of printf’s
%u conversion. Both functions can raise Mem_Failed. It is a checked runt-
ime error for app or flags to be null.

19.2 Example: Another Calculator

mpcalc is like calc, except that it does signed and unsigned computa-
tions on n-bit integers. It illustrates the use of the MP interface. Like
calc, mpcalc uses Polish suffix notation: Values are pushed onto a
stack, and operators pop their operands from the stack and push their
results. A value is one or more consecutive digits in the current input
base, and the operators are as follows.

~ negation & AND

+ addition | inclusive OR

- subtraction ^ exclusive OR

* multiplication < left shift

/ division > right shift

% remainder ! not

i set the input base o set the output base

k set the precision c clear the stack
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White-space characters separate values but are otherwise ignored; other
characters are announced as unrecognized operators. The size of the
stack is limited only by available memory, but a diagnostic announces
stack underflow.

The command nk, where n is at least two, specifies the size of the inte-
gers manipulated by mpcalc; the default is 32. The stack must be empty
when the k operator is executed. The i and o operators specify the input
and output bases; the defaults are both 10. When the input base exceeds
10, the leading digit of a value must be between zero and nine inclusive.

If the output base is two, eight, or 16, the + = * / and % operators do
unsigned arithmetic, and the p and f operators print unsigned values.
For all other bases, + = * / and % do signed arithmetic, and p and f print
signed values. The ~ operator always does signed arithmetic, and the & |
^ ! < and > operators always interpret their operands as unsigned
numbers.
mpcalc announces overflow and division by zero when they occur. For

overflow, the result in this case is the n least significant bits of the value.
For division by zero, the result is zero.

The overall structure of mpcalc is much like that of calc: It interprets
the input, computes values, and manages a stack.

〈mpcalc.c〉≡
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include "mem.h"
#include "seq.h"
#include "fmt.h"
#include "mp.h"
〈mpcalc data 367〉
〈mpcalc functions 367〉

As the inclusion of seq.h suggests, mpcalc uses a sequence for its stack:

d duplicate the value at the top of the stack

p print the value at the top of the stack

f print all the values on the stack from the top down

q quit
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〈mpcalc data 367〉≡
Seq_T sp;

〈initialization 367〉≡
sp = Seq_new(0);

Values are pushed by calling Seq_addhi, and they’re popped by calling
Seq_remhi. mpcalc must not call Seq_remhi when the sequence is
empty, so it wraps all pop operations in a function that checks for
underflow:

〈mpcalc functions 367〉≡
MP_T pop(void) {

if (Seq_length(sp) > 0)
return Seq_remhi(sp);

else {
Fmt_fprint(stderr, "?stack underflow\n");
return MP_new(0);

}
}

Like calc’s pop, mpcalc’s pop always returns an MP_T, even when the
stack is empty, because this simplifies error-checking.

Dealing with MP’s exceptions makes mpcalc’s main loop a bit more
complicated than calc’s. Like calc’s main loop, mpcalc’s reads the next
value or operator and switches on it. But it also sets up some MP_Ts for
operands and results, and it uses a TRY-EXCEPT statement to catch the
exceptions.

〈mpcalc functions 367〉+≡
int main(int argc, char *argv[]) {

int c;

〈initialization 367〉
while ((c = getchar()) != EOF) {

volatile MP_T x = NULL, y = NULL, z = NULL;
TRY

 switch (c) {
〈cases 368〉
}

EXCEPT(MP_Overflow)
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Fmt_fprint(stderr, "?overflow\n");
EXCEPT(MP_Dividebyzero)

Fmt_fprint(stderr, "?divide by 0\n");
END_TRY;
if (z)

Seq_addhi(sp, z);
FREE(x);
FREE(y);

}
〈clean up and exit 368〉

}

〈clean up and exit 368〉≡
〈clear the stack 368〉
Seq_free(&sp);
return EXIT_SUCCESS;

x and y are used for operands, and z is used for the result. If x and y are
nonnull after switching on an operator, they hold operands that were
popped from the stack and thus must be deallocated. If z is nonnull, it
holds the result, which must be pushed. This approach permits the TRY-
EXCEPT statement to appear only once, instead of around the code for
each operator.

An input character is either white space, the first digit of a value, an
operator, or something else, which is an error. Here are the easy cases:

〈cases 368〉≡
default:

if (isprint(c))
Fmt_fprint(stderr, "?'%c'", c);

else
Fmt_fprint(stderr, "?'\\%03o'", c);

Fmt_fprint(stderr, " is unimplemented\n");
break;

case ' ': case '\t': case '\n': case '\f': case '\r':
break;

case 'c': 〈clear the stack 368〉 break;
case 'q': 〈clean up and exit 368〉

〈clear the stack 368〉≡
while (Seq_length(sp) > 0) {
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MP_T x = Seq_remhi(sp);
FREE(x);

}

A digit identifies the beginning of a value; calc gathers up the digits
and calls MP_fromstr to convert them to an MP_T. ibase is the current
input base.

〈cases 368〉≡
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9': {

char buf[512];
z = MP_new(0);
〈gather up digits into buf 369〉
MP_fromstr(z, buf, ibase, NULL);
break;

}

〈gather up digits into buf 369〉≡
{

int i = 0;
for ( ; 〈c is a digit in ibase 369〉; c = getchar(), i++)

if (i < (int)sizeof (buf) - 1)
buf[i] = c;

if (i > (int)sizeof (buf) - 1) {
i = (int)sizeof (buf) - 1;
Fmt_fprint(stderr,

"?integer constant exceeds %d digits\n", i);
}
buf[i] = '\0';
if (c != EOF)

ungetc(c, stdin);
}

Excessively long values are announced and truncated. A character is a
digit in ibase if 

〈c is a digit in ibase 369〉≡
 strchr(&"zyxwvutsrqponmlkjihgfedcba9876543210"[36-ibase],

tolower(c))
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is nonnull.
The cases for most of the arithmetic operators have the same form:

〈cases 368〉+≡
case '+': 〈pop x & y, set z 370〉 (*f->add)(z, x, y); break;
case '-': 〈pop x & y, set z 370〉 (*f->sub)(z, x, y); break;
case '*': 〈pop x & y, set z 370〉 (*f->mul)(z, x, y); break;
case '/': 〈pop x & y, set z 370〉 (*f->div)(z, x, y); break;
case '%': 〈pop x & y, set z 370〉 (*f->mod)(z, x, y); break;
case '&': 〈pop x & y, set z 370〉    MP_and(z, x, y); break;
case '|': 〈pop x & y, set z 370〉    MP_or (z, x, y); break;
case '^': 〈pop x & y, set z 370〉    MP_xor(z, x, y); break;

case '!': z = pop(); MP_not(z, z); break;
case '~': z = pop(); MP_neg(z, z); break;

〈pop x & y, set z 370〉≡
y = pop(); x = pop();
z = MP_new(0);

f points to a structure that holds pointers to functions for those opera-
tions that depend on whether mpcalc is doing signed or unsigned
arithmetic.

〈mpcalc data 367〉+≡
int ibase = 10;
int obase = 10;
struct {

const char *fmt;
MP_T (*add)(MP_T, MP_T, MP_T);
MP_T (*sub)(MP_T, MP_T, MP_T);
MP_T (*mul)(MP_T, MP_T, MP_T);
MP_T (*div)(MP_T, MP_T, MP_T);
MP_T (*mod)(MP_T, MP_T, MP_T);

} s = { "%D\n",
MP_add,  MP_sub,  MP_mul,  MP_div,  MP_mod  },

  u = { "%U\n",
MP_addu, MP_subu, MP_mulu, MP_divu, MP_modu },

 *f = &s;
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obase is the output base. Initially, the bases are both 10, and f points to
s, which holds pointers to the MP functions for signed arithmetic. The i
operator changes ibase, the o operator changes obase, and both opera-
tors reaim f at either u or s:

〈cases 369〉+≡
case 'i': case 'o': {

long n;
x = pop();
n = MP_toint(x);
if (n < 2 || n > 36)

Fmt_fprint(stderr, "?%d is an illegal base\n",n);
else if (c == 'i')

ibase = n;
else

obase = n;
if (obase == 2 || obase == 8 || obase == 16)

f = &u;
else

f = &s;
break;
}

The base isn’t changed if y can’t be converted to a long (that is, if
MP_toint raises MP_Overflow), or if the resulting integer isn’t a legal
base.

The s and u structures also hold a Fmt-style format string that is used
to print MP_Ts. mpcalc registers MP_fmt with %D and MP_fmtu with %U:

〈initialization 367〉+≡
Fmt_register('D', MP_fmt);
Fmt_register('U', MP_fmtu);

f->fmt thus accesses the appropriate format string, which the p and f
operators use to print MP_Ts. Note that p pops its operand into z — the
code in the main loop pushes that value back onto the stack.

〈cases 369〉+≡
case 'p':

Fmt_print(f->fmt, z = pop(), obase);
break;



372 MULTIPLE-PRECISION ARITHMETIC
case 'f': {
int n = Seq_length(sp);
while (--n >= 0)

Fmt_print(f->fmt, Seq_get(sp, n), obase);
break;

}

Compare the code for f with calc’s code on page 332; it’s easy to print
all of the values on the stack when it’s represented with a Seq_T.

The shift operators guard against illegal shift amounts, and shift their
operand in place:

〈cases 369〉+≡
case '<': { 〈get s & z 372〉; MP_lshift(z, z, s); break; }
case '>': { 〈get s & z 372〉; MP_rshift(z, z, s); break; }

〈get s & z 372〉≡
long s;
y = pop();
z = pop();
s = MP_toint(y);
if (s < 0 || s > INT_MAX) {

Fmt_fprint(stderr,
"?%d is an illegal shift amount\n", s);

break;
}

If MP_toint raises MP_Overflow, or s is negative or exceeds the largest
int, the operand, z, is simply pushed back onto the stack.

The remaining cases are for the k and d operators:

〈cases 369〉+≡
case 'k': {

long n;
x = pop();
n = MP_toint(x);
if (n < 2 || n > INT_MAX)

Fmt_fprint(stderr,
"?%d is an illegal precision\n", n);

else if (Seq_length(sp) > 0)
Fmt_fprint(stderr, "?nonempty stack\n");
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else
MP_set(n);

break;
}

case 'd': {
MP_T x = pop();
z = MP_new(0);
Seq_addhi(sp, x);
MP_addui(z, x, 0);
break;
}

Again, setting z causes that value to be pushed by the code in the main
loop.

19.3 Implementation

〈mp.c〉≡
#include <ctype.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include "assert.h"
#include "fmt.h"
#include "mem.h"
#include "xp.h"
#include "mp.h"

#define T MP_T

〈macros 374〉
〈data 373〉
〈static functions 389〉
〈functions 374〉

〈data 373〉≡
const Except_T MP_Dividebyzero = { "Division by zero" };
const Except_T MP_Overflow     = { "Overflow" };



374 MULTIPLE-PRECISION ARITHMETIC
XP represents an n-bit number as  = (n − 1)/8 + 1 bytes, least sig-
nificant byte first (n is always positive). The following figure shows how
MP interprets these bytes. The least significant byte is on the right, and
addresses increase to the left.

The sign bit is bit n − 1, that is, bit (n − 1) mod 8 in byte (n − 1)/8. Given
n, MP computes three values of interest in addition to saving n as nbits:
nbytes, the number of bytes required to hold n bits; shift, the number
of bits the most significant byte must be shifted right to isolate the sign
bit; and msb, a mask of shift+1 ones, which is used to detect overflow.
When n is 32, these values are:

〈data 373〉+≡
static int nbits  =  32;
static int nbytes = (32-1)/8 + 1;
static int shift  = (32-1)%8;
static unsigned char msb = 0xFF;

As suggested above, MP uses nbytes and shift to access the sign bit:

〈macros 374〉≡
#define sign(x) ((x)[nbytes-1]>>shift)

These values are changed by MP_set:

〈functions 374〉≡
int MP_set(int n) {

int prev = nbits;

assert(n > 1);
〈initialize 375〉
return prev;

}

n 8⁄

byte 01(n−1)/8−1(n−1)/8

shift
bit n−1

•••
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〈initialize 375〉≡
nbits  = n;
nbytes = (n-1)/8 + 1;
shift  = (n-1)%8;
msb    = ones(n);

〈macros 374〉+≡
#define ones(n) (~(~0UL<<(((n)-1)%8+1)))

Shifting ~0 left (n-1)%8+1 bits forms a mask of ones followed by
(n - 1) mod 8 + 1 zeros; complementing it yields (n − 1) mod 8 + 1 ones
in the least significant bits. ones is defined this way because it is used
for other values of n besides the values passed to MP_set.
MP_set also allocates some temporary space for use in the arithmetic

functions, like MP_div. The allocation is thus done once in MP_set
instead of repeatedly in the arithmetic functions. MP_set allocates
enough space for one 2•nbyte+2 temporary and three nbyte
temporaries.

〈data 373〉+≡
static unsigned char temp[16 + 16 + 16 + 2*16+2];
static T tmp[] = {temp, temp+1*16, temp+2*16, temp+3*16};

〈initialize 375〉+≡
if (tmp[0] != temp)

FREE(tmp[0]);
if (nbytes <= 16)

tmp[0] = temp;
else

tmp[0] = ALLOC(3*nbytes + 2*nbytes + 2);
tmp[1] = tmp[0] + 1*nbytes;
tmp[2] = tmp[0] + 2*nbytes;
tmp[3] = tmp[0] + 3*nbytes;

MP_set can use the statically allocated temp when nbytes doesn’t
exceed 16, or when n doesn’t exceed 128. Otherwise, it must allocate
space for the temporary. temp is necessary because MP must be initial-
ized as if MP_set(32) had been executed.

Most of the MP functions call XP functions to do the actual arithmetic
on nbyte numbers, then check whether the result exceeds nbits bits.
MP_new and MP_fromintu illustrate this strategy.
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〈functions 374〉+≡
T MP_new(unsigned long u) {

return MP_fromintu(ALLOC(nbytes), u);
}

T MP_fromintu(T z, unsigned long u) {
unsigned long carry;

assert(z);
〈set z to u 376〉
〈test for unsigned overflow 376〉
return z;

}

〈set z to u 376〉≡
carry = XP_fromint(nbytes, z, u);
carry |= z[nbytes-1]&~msb;
z[nbytes-1] &= msb;

If XP_fromint returns a nonzero carry, u doesn’t fit in nbytes. If carry
is zero, u fits in nbytes, but it might not fit in nbits bits. MP_fromintu
must ensure that the 8-(shift+1) most significant bits in z’s most sig-
nificant byte are zeros. MP_set has arranged for msb to hold a mask of
shift+1 ones, so ~msb isolates the desired bits, which are OR’ed into
carry before they’re discarded. The test for unsigned overflow simply
tests carry:

〈test for unsigned overflow 376〉≡
if (carry)

RAISE(MP_Overflow);

Notice that MP_fromintu sets z before testing for overflow; as specified
by the interface, all of the MP functions must set their results before rais-
ing an exception.

Testing for signed overflow is a bit more complicated, because it
depends on the operation involved. MP_fromint illustrates an easy case.

〈functions 374〉+≡
T MP_fromint(T z, long v) {

assert(z);
〈set z to v 377〉
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if (〈v is too big 377〉)
RAISE(MP_Overflow);

return z;
}

First, MP_fromint initializes z to the value of v, taking care to pass only
positive values to XP_fromint:

〈set z to v 377〉≡
if (v == LONG_MIN) {

XP_fromint(nbytes, z, LONG_MAX + 1UL);
XP_neg(nbytes, z, z, 1);

} else if (v < 0) {
XP_fromint(nbytes, z, -v);
XP_neg(nbytes, z, z, 1);

} else
XP_fromint(nbytes, z, v);

z[nbytes-1] &= msb;

The first two if clauses handle negative values: z is set to the absolute
value of v, and then to its two’s complement, which is accomplished by
passing a one as the fourth argument to XP_neg. MP_fromint must treat
the most negative integer specially, because it can’t negate it. If v is nega-
tive, z’s most significant bits will be ones, and the excess bits must be
discarded. Many of the MP functions use the z[nbytes-1] &= msb idiom
shown above to discard the excess bits in z’s most significant byte.

For MP_fromint, signed overflow occurs when nbits is less than the
number of bits in a long and v is outside z’s range.

〈v is too big 377〉≡
(nbits < 8*(int)sizeof (v) &&

(v < -(1L<<(nbits-1)) || v >= (1L<<(nbits-1))))

The two shift expressions compute the most negative and most positive
nbits-long signed integer.

19.3.1 Conversions

MP_toint and MP_cvt illustrate another instance of checking for signed
overflow:
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〈functions 374〉+≡
long MP_toint(T x) {

unsigned char d[sizeof (unsigned long)];

assert(x);
MP_cvt(8*sizeof d, d, x);
return XP_toint(sizeof d, d);

}

MP_cvt raises MP_Overflow if d can’t hold x; if d can hold x, XP_toint
returns the desired value.
MP_cvt does both kinds of conversions: It converts an MP_T to an MP_T

with either fewer or more bits.

〈functions 374〉+≡
T MP_cvt(int m, T z, T x) {

int fill, i, mbytes = (m - 1)/8 + 1;

assert(m > 1);
〈checked runtime errors for unary functions 378〉
fill = sign(x) ? 0xFF : 0;
if (m < nbits) {

〈narrow signed x 379〉
} else {

〈widen signed x 379〉
}
return z;

}

〈checked runtime errors for unary functions 378〉≡
assert(x); assert(z);

If m is less than nbits, MP_cvt “narrows” the value of x and assigns it to
z. This case must check for signed overflow. x fits in m bits if bits m
through nbits−1 in x are either all zeros or all ones; that is, if the excess
bits in x are equal to the sign bit of x when it’s treated as an m-bit integer.
In the chunk below, fill is FF if x is negative and zero otherwise, so
x[i]^fill should be zero if the bits x[m..nbits-1] are all ones or all
zeros.
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〈narrow signed x 379〉≡
int carry = (x[mbytes-1]^fill)&~ones(m);
for (i = mbytes; i < nbytes; i++)

carry |= x[i]^fill;
memcpy(z, x, mbytes);
z[mbytes-1] &= ones(m);
if (carry)

RAISE(MP_Overflow);

If x is in range, carry will be zero; otherwise, some of carry’s bits will
be ones. The initial assignment to carry ignores the bits that will be part
of z’s nonsign bits.

If m is at least nbits, MP_cvt “widens” the value of x and assigns it to
z. Overflow cannot occur in this case, but MP_cvt must propagate x’s
sign bit, which is given by fill.

〈widen signed x 379〉≡
memcpy(z, x, nbytes);
z[nbytes-1] |= fill&~msb;
for (i = nbytes; i < mbytes; i++)

z[i] = fill;
z[mbytes-1] &= ones(m);

MP_tointu uses a similar approach: It calls MP_cvtu to convert x to an
MP_T with the number of bits in an unsigned long, then calls XP_toint to
return the value.

〈functions 374〉+≡
unsigned long MP_tointu(T x) {

unsigned char d[sizeof (unsigned long)];

assert(x);
MP_cvtu(8*sizeof d, d, x);
return XP_toint(sizeof d, d);

}

Again, MP_cvtu either narrows or widens the value of x and assigns it to
z.
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〈functions 374〉+≡
T MP_cvtu(int m, T z, T x) {

int i, mbytes = (m - 1)/8 + 1;

assert(m > 1);
〈checked runtime errors for unary functions 378〉
if (m < nbits) {

〈narrow unsigned x 380〉
} else {

〈widen unsigned x 380〉
}
return z;

}

When m is less than nbits, overflow occurs if any of x’s bits m through
nbits−1 are ones, which is checked with code that is similar to, but sim-
pler than, the code in MP_cvt:

〈narrow unsigned x 380〉≡
int carry = x[mbytes-1]&~ones(m);
for (i = mbytes; i < nbytes; i++)

carry |= x[i];
memcpy(z, x, mbytes);
z[mbytes-1] &= ones(m);
〈test for unsigned overflow 376〉

When m is at least nbits, overflow cannot occur, and the excess bits in z
are set to zeros:

〈widen unsigned x 380〉≡
memcpy(z, x, nbytes);
for (i = nbytes; i < mbytes; i++)

z[i] = 0;

19.3.2 Unsigned Arithmetic

As the code for MP_cvtu and MP_cvt suggests, the unsigned arithmetic
functions are easier to implement than their signed counterparts,
because they don’t need to handle signs and testing for overflow is sim-
pler. Unsigned addition illustrates an easy case; XP_add does all the
work.
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〈functions 374〉+≡
T MP_addu(T z, T x, T y) {

int carry;

〈checked runtime errors for binary functions 381〉
carry = XP_add(nbytes, z, x, y, 0);
carry |= z[nbytes-1]&~msb;
z[nbytes-1] &= msb;
〈test for unsigned overflow 376〉
return z;

}

〈checked runtime errors for binary functions 381〉≡
assert(x); assert(y); assert(z);

Subtraction is just as easy, but MP_Overflow is raised when there’s an
outstanding borrow:

〈functions 374〉+≡
T MP_subu(T z, T x, T y) {

int borrow;

〈checked runtime errors for binary functions 381〉
borrow = XP_sub(nbytes, z, x, y, 0);
borrow |= z[nbytes-1]&~msb;
z[nbytes-1] &= msb;
〈test for unsigned underflow 381〉
return z;

}

〈test for unsigned underflow 381〉≡
if (borrow)

RAISE(MP_Overflow);

MP_mul2u is the simplest of the multiplication functions, because
overflow cannot occur.

〈functions 374〉+≡
T MP_mul2u(T z, T x, T y) {

〈checked runtime errors for binary functions 381〉
memset(tmp[3], '\0', 2*nbytes);
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XP_mul(tmp[3], nbytes, x, nbytes, y);
memcpy(z, tmp[3], (2*nbits - 1)/8 + 1);
return z;

}

MP_mul2u computes the result into tmp[3] and copies tmp[3] to z so
that x or y can be used as z, which would not work if MP_mul2u com-
puted the result directly into z. Allocating the temporary space in
MP_set thus not only isolates the allocations, but avoids restrictions on
x and y.
MP_mul also calls XP_mul to compute a double-length result in

tmp[3], and then narrows that result to nbits and assigns it to z.

〈functions 374〉+≡
T MP_mulu(T z, T x, T y) {

〈checked runtime errors for binary functions 381〉
memset(tmp[3], '\0', 2*nbytes);
XP_mul(tmp[3], nbytes, x, nbytes, y);
memcpy(z, tmp[3], nbytes);
z[nbytes-1] &= msb;
〈test for unsigned multiplication overflow 382〉
return z;

}

The product overflows if any of the bits nbits through 2•nbits−1 in
tmp[3] are ones. This condition can be tested much the way the similar
condition in MP_cvtu is tested:

〈test for unsigned multiplication overflow 382〉≡
{

int i;
if (tmp[3][nbytes-1]&~msb)

RAISE(MP_Overflow);
for (i = 0; i < nbytes; i++)

if (tmp[3][i+nbytes] != 0)
RAISE(MP_Overflow);

}

MP_divu avoids XP_div’s restrictions on its arguments by copying y
to a temporary:



IMPLEMENTATION 383
〈functions 374〉+≡
T MP_divu(T z, T x, T y) {

〈checked runtime errors for binary functions 381〉
〈copy y to a temporary 383〉
if (!XP_div(nbytes, z, x, nbytes, y, tmp[2], tmp[3]))

RAISE(MP_Dividebyzero);
return z;

}

〈copy y to a temporary 383〉≡
{

memcpy(tmp[1], y, nbytes);
y = tmp[1];

}

tmp[2] holds the remainder, which is discarded; tmp[1] holds y, and y
is reaimed at tmp[1]. tmp[3] is the 2•nbyte+2 temporary needed by
XP_div. MP_modu is similar, but it uses tmp[2] to hold the quotient:

〈functions 374〉+≡
T MP_modu(T z, T x, T y) {

〈checked runtime errors for binary functions 381〉
〈copy y to a temporary 383〉
if (!XP_div(nbytes, tmp[2], x, nbytes, y, z, tmp[3]))

RAISE(MP_Dividebyzero);
return z;

}

19.3.3 Signed Arithmetic

AP’s sign-magnitude representation forces AP_add to consider the signs
x of y. The properties of the two’s-complement representation permit
MP_add to avoid this case analysis and simply call  XP_add regardless of
the signs of x and y. Thus, signed addition is nearly identical to unsigned
addition; the only important difference is the test for overflow.

〈functions 374〉+≡
T MP_add(T z, T x, T y) {

int sx, sy;
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〈checked runtime errors for binary functions 381〉
sx = sign(x);
sy = sign(y);
XP_add(nbytes, z, x, y, 0);
z[nbytes-1] &= msb;
〈test for signed overflow 384〉
return z;

}

Overflow occurs in addition when x and y have the same signs. When the
sum overflows, its sign is different from that of  x and y:

〈test for signed overflow 384〉≡
if (sx == sy && sy != sign(z))

RAISE(MP_Overflow);

Signed subtraction has the same form as addition, but the test for
overflow is different.

〈functions 374〉+≡
T MP_sub(T z, T x, T y) {

int sx, sy;

〈checked runtime errors for binary functions 381〉
sx = sign(x);
sy = sign(y);
XP_sub(nbytes, z, x, y, 0);
z[nbytes-1] &= msb;
〈test for signed underflow 384〉
return z;

}

For subtraction, underflow occurs when x and y have different signs.
When x is positive and y is negative, the result should be positive; when
x is negative and y is positive, the result should be negative. Thus, if x
and y have different signs, and the result has the same sign as y, under-
flow has occurred.

〈test for signed underflow 384〉≡
if (sx != sy && sy == sign(z))

RAISE(MP_Overflow);
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Negating x is equivalent to subtracting it from zero: Overflow can
occur only when x is negative, and when the result overflows, it’s still
negative.

〈functions 374〉+≡
T MP_neg(T z, T x) {

int sx;

〈checked runtime errors for unary functions 378〉
sx = sign(x);
XP_neg(nbytes, z, x, 1);
z[nbytes-1] &= msb;
if (sx && sx == sign(z))

RAISE(MP_Overflow);
return z;

}

MP_neg must clear the excess bits in z’s most significant byte because
they will be ones when x is positive.

The easiest way to implement signed multiplication is to negate nega-
tive operands, do an unsigned multiplication, and negate the result when
the operands have different signs. For MP_mul2, overflow can never
occur because it computes a double-length result, and the details are
easy to fill in:

〈functions 374〉+≡
T MP_mul2(T z, T x, T y) {

int sx, sy;

〈checked runtime errors for binary functions 381〉
〈tmp[3] ← x•y 385〉
if (sx != sy)

XP_neg((2*nbits - 1)/8 + 1, z, tmp[3], 1);
else

memcpy(z, tmp[3], (2*nbits - 1)/8 + 1);
return z;

}

〈tmp[3] ← x•y 385〉≡
sx = sign(x);
sy = sign(y);
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〈if x < 0, negate x 386〉
〈if y < 0, negate y 386〉
memset(tmp[3], '\0', 2*nbytes);
XP_mul(tmp[3], nbytes, x, nbytes, y);

The product has 2•nbits, which needs only (2•nbits − 1)/8 + 1 bytes of
z. x and y are negated, when necessary, by forming the negated values in
an appropriate temporary, and reaiming x or y at that temporary.

〈if x < 0, negate x 386〉≡
if (sx) {

XP_neg(nbytes, tmp[0], x, 1);
x = tmp[0];
x[nbytes-1] &= msb;

}

〈if y < 0, negate y 386〉≡
if (sy) {

XP_neg(nbytes, tmp[1], y, 1);
y = tmp[1];
y[nbytes-1] &= msb;

}

By convention, x and y are negated or copied, when necessary, into
tmp[0] and tmp[1] by the MP functions.
MP_mul is similar to MP_mul2, but only the least significant nbits of

the 2•nbit result are copied to z, and overflow occurs when the result
doesn’t fit in nbits, or when the operands have the same signs and the
result is negative.

〈functions 374〉+≡
T MP_mul(T z, T x, T y) {

int sx, sy;

〈checked runtime errors for binary functions 381〉
〈tmp[3] ← x•y 385〉
if (sx != sy)

XP_neg(nbytes, z, tmp[3], 1);
else

memcpy(z, tmp[3], nbytes);
z[nbytes-1] &= msb;
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〈test for unsigned multiplication overflow 382〉
if (sx == sy && sign(z))

RAISE(MP_Overflow);
return z;

}

Signed division is much like unsigned division when the operands
have the same signs, because both the quotient and the remainder are
nonnegative. Overflow occurs only when the dividend is the most nega-
tive n-bit value and the divisor is −1; in this case, the quotient will be
negative.

〈functions 374〉+≡
T MP_div(T z, T x, T y) {

int sx, sy;

〈checked runtime errors for binary functions 381〉
sx = sign(x);
sy = sign(y);
〈if x < 0, negate x 386〉
〈if y < 0, negate y 386〉 else 〈copy y to a temporary 383〉
if (!XP_div(nbytes, z, x, nbytes, y, tmp[2], tmp[3]))

RAISE(MP_Dividebyzero);
if (sx != sy) {

〈adjust the quotient 388〉
} else if (sx && sign(z))

RAISE(MP_Overflow);
return z;

}

MP_div either negates y into its temporary or copies it there, because y
and z might the same MP_T, and it uses tmp[2] to hold the remainder.

The complicated case for signed division and modulus is when the
operands have different signs. In this case, the quotient is negative but
must be truncated toward minus infinity, and the remainder is positive.
The required adjustments are the same ones that AP_div and AP_mod do:
The quotient is negated and, if the remainder is nonzero, the quotient is
decremented. Also, if the unsigned remainder is nonzero, y minus that
remainder is the correct value.
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〈adjust the quotient 388〉≡
XP_neg(nbytes, z, z, 1);
if (!iszero(tmp[2]))

XP_diff(nbytes, z, z, 1);
z[nbytes-1] &= msb;

〈macros 374〉+≡
#define iszero(x) (XP_length(nbytes,(x))==1 && (x)[0]==0)

MP_div doesn’t bother adjusting the remainder, because it’s discarded.
MP_mod does just the opposite: It adjusts only the remainder, and uses
tmp[2] to hold the quotient.

〈functions 374〉+≡
T MP_mod(T z, T x, T y) {

int sx, sy;

〈checked runtime errors for binary functions 381〉
sx = sign(x);
sy = sign(y);
〈if x < 0, negate x 386〉
〈if y < 0, negate y 386〉 else 〈copy y to a temporary 383〉
if (!XP_div(nbytes, tmp[2], x, nbytes, y, z, tmp[3]))

RAISE(MP_Dividebyzero);
if (sx != sy) {

if (!iszero(z))
XP_sub(nbytes, z, y, z, 0);

} else if (sx && sign(tmp[2]))
RAISE(MP_Overflow);

return z;
}

19.3.4 Convenience Functions

The arithmetic convenience functions take a long or unsigned long
immediate operand, convert it to an MP_T, if necessary, and perform the
corresponding arithmetic operation. When y is a single digit in base ,
these functions can use the single-digit functions exported by XP. But
there are two opportunities for overflow: y might be too big, and the
operation itself might overflow. If y is too big, these functions must com-

2
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plete the operation and the assignment to z before raising an exception.
MP_addui illustrates the approach used by all the convenience functions:

〈functions 374〉+≡
T MP_addui(T z, T x, unsigned long y) {

〈checked runtime errors for unary functions 378〉
if (y < BASE) {

int carry = XP_sum(nbytes, z, x, y);
carry |= z[nbytes-1]&~msb;
z[nbytes-1] &= msb;
〈test for unsigned overflow 376〉

} else if (applyu(MP_addu, z, x, y))
RAISE(MP_Overflow);

return z;
}

〈macros 374〉+≡
#define BASE (1<<8)

If y is one digit, XP_sum can compute x + y. This code also detects over-
flow when nbits is less than eight and y is too big, because the sum will
be too big for any value of x. Otherwise, MP_addui calls applyu to con-
vert y to an MP_T and to apply the more general function MP_addu.
applyu returns a one if y is too big, but only after it computes z:

〈static functions 389〉≡
static int applyu(T op(T, T, T), T z, T x,

unsigned long u) {
unsigned long carry;

{ T z = tmp[2]; 〈set z to u 376〉 }
op(z, x, tmp[2]);
return carry != 0;

}

applyu uses the code from MP_fromintu to convert the unsigned long
operand into tmp[2]. It saves the carry from the conversion because the
conversion might overflow. It then calls the function specified by its first
argument, and returns one if the saved carry is nonzero, or zero other-
wise. The function op might raise an exception, too, but only after it
sets z.
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The convenience functions for unsigned subtraction and multiplica-
tion are similar. When y is less than , MP_subui calls MP_diff.

〈functions 381〉+≡
T MP_subui(T z, T x, unsigned long y) {

〈checked runtime errors for unary functions 381〉
if (y < BASE) {

int borrow = XP_diff(nbytes, z, x, y);
borrow |= z[nbytes-1]&~msb;
z[nbytes-1] &= msb;
〈test for unsigned underflow 381〉

} else if (applyu(MP_subu, z, x, y))
RAISE(MP_Overflow);

return z;
}

When y is too big, x − y underflows for all x, so MP_subui doesn’t need
to check whether y is too big before calling XP_diff.
MP_mului calls MP_product, but MP_mului must explicitly check

whether y is too big when nbits is less than eight, because XP_product
won’t catch that error when x is zero. This check is made after comput-
ing z.

T MP_mului(T z, T x, unsigned long y) {
〈checked runtime errors for unary functions 381〉
if (y < BASE) {

int carry = XP_product(nbytes, z, x, y);
carry |= z[nbytes-1]&~msb;
z[nbytes-1] &= msb;
〈test for unsigned overflow 376〉
〈check if unsigned y is too big 390〉

} else if (applyu(MP_mulu, z, x, y))
RAISE(MP_Overflow);

return z;
}

〈check if unsigned y is too big 390〉≡
if (nbits < 8 && y >= (1U<<nbits))

RAISE(MP_Overflow);

2
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MP_divui and MP_modui use XP_quotient, but they must test for a
zero divisor themselves (because XP_quotient accepts only nonzero,
single-digit divisors), and they must test for overflow when nbits is less
than eight and y is too big.

〈functions 381〉+≡
T MP_divui(T z, T x, unsigned long y) {

〈checked runtime errors for unary functions 381〉
if (y == 0)

RAISE(MP_Dividebyzero);
else if (y < BASE) {

XP_quotient(nbytes, z, x, y);
〈check if unsigned y is too big 390〉

} else if (applyu(MP_divu, z, x, y))
RAISE(MP_Overflow);

return z;
}

MP_modui calls XP_quotient, but only to compute the remainder. It
discards the quotient computed into tmp[2]:

〈functions 381〉+≡
unsigned long MP_modui(T x, unsigned long y) {

assert(x);
if (y == 0)

RAISE(MP_Dividebyzero);
else if (y < BASE) {

int r = XP_quotient(nbytes, tmp[2], x, y);
〈check if unsigned y is too big 390〉
return r;

} else if (applyu(MP_modu, tmp[2], x, y))
RAISE(MP_Overflow);

return XP_toint(nbytes, tmp[2]);
}

The signed arithmetic convenience functions use the same approach,
but call a different apply function, which uses MP_fromint’s code to
convert a long to a signed MP_T in tmp[2], calls the desired function, and
returns one if the immediate operand is too big, or zero otherwise.
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〈static functions 389〉+≡
static int apply(T op(T, T, T), T z, T x, long v) {

{ T z = tmp[2]; 〈set z to v 377〉 }
op(z, x, tmp[2]);
return 〈v is too big 377〉;

}

When  is less than , the signed convenience functions have a bit
more work to do than their unsigned counterparts, because they must
deal with signed operands. The single-digit XP functions take only posi-
tive single-digit operands, so the signed convenience functions must use
the signs of their operands to determine which function to call. The anal-
ysis is similar to that done by the AP functions (see page 338), but MP’s
two’s-complement representation simplifies the details. Here are the
cases for addition.

When y is negative,  is equal to  for any x, so MP_addi can use
XP_diff to compute the sum; it can use XP_sum when y is nonnegative.

〈functions 381〉+≡
T MP_addi(T z, T x, long y) {

〈checked runtime errors for unary functions 381〉
if (-BASE < y && y < BASE) {

int sx = sign(x), sy = y < 0;
if (sy)

XP_diff(nbytes, z, x, -y);
else

XP_sum (nbytes, z, x,  y);
z[nbytes-1] &= msb;
〈test for signed overflow 384〉
〈check if signed y is too big 393〉

} else if (apply(MP_add, z, x, y))
RAISE(MP_Overflow);

return z;
}

y 2
8

y 0< y 0≥

x 0< x y+( )– x y–= x y–( )– x y+=

x 0≥ x y– x y–= x y+ x y+=

x y+ x y–
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〈check if signed y is too big 393〉≡
if (nbits < 8
&& (y < -(1<<(nbits-1)) || y >= (1<<(nbits-1))))

RAISE(MP_Overflow);

The cases for signed subtraction are just the opposite of those for
addition (see page 340 for AP_sub’s case):

So, MP_subi calls XP_sum to add  to any x when y is negative, and calls
XP_diff when y is nonnegative.

〈functions 381〉+≡
T MP_subi(T z, T x, long y) {

〈checked runtime errors for unary functions 381〉
if (-BASE < y && y < BASE) {

int sx = sign(x), sy = y < 0;
if (sy)

XP_sum (nbytes, z, x, -y);
else

XP_diff(nbytes, z, x,  y);
z[nbytes-1] &= msb;
〈test for signed underflow 384〉
〈check if signed y is too big 393〉

} else if (apply(MP_sub, z, x, y))
RAISE(MP_Overflow);

return z;
}

MP_muli uses MP_mul’s strategy: It negates negative operands, com-
putes the product by calling XP_product, and negates the product when
the operands have different signs.

〈functions 381〉+≡
T MP_muli(T z, T x, long y) {

〈checked runtime errors for unary functions 381〉

y 0< y 0≥

x 0< x y–( )– x y+= x y+( )– x y–=

x 0≥ x y+ x y+= x y– x y–=

y
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if (-BASE < y && y < BASE) {
int sx = sign(x), sy = y < 0;
〈if x < 0, negate x 386〉
XP_product(nbytes, z, x, sy ? -y : y);
if (sx != sy)

XP_neg(nbytes, z, x, 1);
z[nbytes-1] &= msb;
if (sx == sy && sign(z))

RAISE(MP_Overflow);
〈check if signed y is too big 393〉

} else if (apply(MP_mul, z, x, y))
RAISE(MP_Overflow);

return z;
}

MP_divi and MP_modi must check for a zero divisor, because they call
XP_quotient to compute the quotient and remainder. MP_divi discards
the remainder, and MP_modi discards the quotient:

〈functions〉+≡
T MP_divi(T z, T x, long y) {

〈checked runtime errors for unary functions 381〉
if (y == 0)

RAISE(MP_Dividebyzero);
else if (-BASE < y && y < BASE) {

int r;
〈z ← x/y, r ← x mod y 395〉
〈check if signed y is too big 393〉

} else if (apply(MP_div, z, x, y))
RAISE(MP_Overflow);

return z;
}

long MP_modi(T x, long y) {
assert(x);
if (y == 0)

RAISE(MP_Dividebyzero);
else if (-BASE < y && y < BASE) {

T z = tmp[2];
int r;
〈z ← x/y, r ← x mod y 395〉
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〈check if signed y is too big 393〉
return r;

} else if (apply(MP_mod, tmp[2], x, y))
RAISE(MP_Overflow);

return MP_toint(tmp[2]);
}

MP_modi calls MP_toint instead of XP_toint to ensure that the sign is
extended properly.

The chunk common to both MP_divi and MP_modi computes the quo-
tient and the remainder, and adjusts the quotient and remainder when x
and y have different signs and the remainder is nonzero.

〈z ← x/y, r ← x mod y 395〉≡
int sx = sign(x), sy = y < 0;
〈if x < 0, negate x 386〉
r = XP_quotient(nbytes, z, x, sy ? -y : y);
if (sx != sy) {

XP_neg(nbytes, z, z, 1);
if (r != 0) {

XP_diff(nbytes, z, z, 1);
r = y - r;

}
z[nbytes-1] &= msb;

} else if (sx && sign(z))
RAISE(MP_Overflow);

19.3.5 Comparisons and Logical Operations

Unsigned comparison is easy — MP_cmp can just call XP_cmp:

〈functions 381〉+≡
int MP_cmpu(T x, T y) {

assert(x);
assert(y);
return XP_cmp(nbytes, x, y);

}

When x and y have different signs, MP_cmp(x,y) simply returns the dif-
ference of the signs of y and x:
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〈functions 381〉+≡
int MP_cmp(T x, T y) {

int sx, sy;

assert(x);
assert(y);
sx = sign(x);
sy = sign(y);
if (sx != sy)

return sy - sx;
else

return XP_cmp(nbytes, x, y);
}

When x and y have the same signs, MP_cmp can treat them as unsigned
numbers and call XP_cmp to compare them.

The comparison convenience functions can’t use applyu and apply,
because they compute integer results, and because they don’t insist that
their long or unsigned long operands fit in an MP_T. These functions sim-
ply compare an MP_T with an immediate value; when the value is too big,
that will be reflected in the outcome of the comparison. When an
unsigned long has at least nbits bits, MP_cmpui converts the MP_T to an
unsigned long and uses the usual C comparisons. Otherwise, it converts
the immediate value to an MP_T in tmp[2] and calls XP_cmp.

〈functions 381〉+≡
int MP_cmpui(T x, unsigned long y) {

assert(x);
if ((int)sizeof y >= nbytes) {

unsigned long v = XP_toint(nbytes, x);
〈return −1, 0, +1, if v < y, v = y, v > y 396〉

} else {
XP_fromint(nbytes, tmp[2], y);
return XP_cmp(nbytes, x, tmp[2]);

}
}

〈return −1, 0, +1, if v < y, v = y, v > y 396〉≡
if (v < y)

return -1;
else if (v > y)
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return 1;
else

return 0;

MP_cmpui doesn’t have to check for overflow after it calls XP_fromint,
because that call is made only when y has fewer bits than an MP_T.
MP_cmpi can avoid comparisons altogether when x and y have differ-

ent signs. Otherwise, it uses MP_cmpui’s approach: If the immediate
value has at least as many bits as an MP_T, the comparison can be done
with C comparisons.

〈functions 374〉+≡
int MP_cmpi(T x, long y) {

int sx, sy = y < 0;

assert(x);
sx = sign(x);
if (sx != sy)

return sy - sx;
else if ((int)sizeof y >= nbytes) {

long v = MP_toint(x);
〈return −1, 0, +1, if v < y, v = y, v > y 396〉

} else {
MP_fromint(tmp[2], y);
return XP_cmp(nbytes, x, tmp[2]);

}
}

When x and y have the same signs and y has fewer bits than an MP_T,
MP_cmpi can safely convert y to an MP_T in tmp[2], and then call XP_cmp
to compare x and tmp[2]. MP_cmpi calls MP_fromint instead of
XP_fromint in order to handle negative values of y correctly.

The binary logical functions — MP_and, MP_or, and MP_xor — are the
easiest MP functions to implement because each byte of the result is a
bitwise operation on the corresponding bytes in the operands:

〈macros 374〉+≡
#define bitop(op) \

int i; assert(z); assert(x); assert(y); \
for (i = 0; i < nbytes; i++) z[i] = x[i] op y[i]; \
return z
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〈functions 374〉+≡
T MP_and(T z, T x, T y) { bitop(&); }
T MP_or (T z, T x, T y) { bitop(|); }
T MP_xor(T z, T x, T y) { bitop(^); }

MP_not is the oddball that doesn’t fit bitop’s pattern:

〈functions 374〉+≡
T MP_not(T z, T x) {

int i;

〈checked runtime errors for unary functions 378〉
for (i = 0; i < nbytes; i++)

z[i] = ~x[i];
z[nbytes-1] &= msb;
return z;

}

There’s little to be gained from writing special-case code for single-
digit operands to the three logical convenience functions, and immediate
operands to these functions don’t cause an exception. applyu can still be
used; its return value is simply ignored.

〈macros 374〉+≡
#define bitopi(op) assert(z); assert(x); \

applyu(op, z, x, y); \
return z

〈functions 374〉+≡
T MP_andi(T z, T x, unsigned long y) { bitopi(MP_and); }
T MP_ori (T z, T x, unsigned long y) { bitopi(MP_or);  }
T MP_xori(T z, T x, unsigned long y) { bitopi(MP_xor); }

The three shift functions call XP_lshift or XP_rshift, after enforc-
ing their checked runtime errors, and after checking for the easy case
when s exceeds or is equal to nbits, in which case, the result is all
zeroes or all ones. XP_ashift fills with ones and thus implements an
arithmetic right shift.

〈macros 374〉+≡
#define shft(fill, op) \
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assert(x); assert(z); assert(s >= 0); \
if (s >= nbits) memset(z, fill, nbytes); \
else op(nbytes, z, nbytes, x, s, fill); \
z[nbytes-1] &= msb; \
return z

〈functions 374〉+≡
T MP_lshift(T z, T x, int s) { shft(0, XP_lshift); }
T MP_rshift(T z, T x, int s) { shft(0, XP_rshift); }
T MP_ashift(T z, T x, int s) { shft(sign(x),XP_rshift); }

19.3.6 String Conversions

The last four functions convert between strings and MP_Ts. MP_fromstr
is like strtoul; it interprets the string as an unsigned number in a base
between two and 36, inclusive. Letters specify the digits above nine in
bases that exceed 10.

〈functions 374〉+≡
T MP_fromstr(T z, const char *str, int base, char **end){

int carry;

assert(z);
memset(z, '\0', nbytes);
carry = XP_fromstr(nbytes, z, str, base, end);
carry |= z[nbytes-1]&~msb;
z[nbytes-1] &= msb;
〈test for unsigned overflow 376〉
return z;

}

XP_fromstr does the conversion and sets *end to the address of the
character that terminated the conversion, if end is nonnull. z is initial-
ized to zero because XP_fromint adds the converted value to z.
MP_tostr performs the opposite conversion: It takes an MP_T and fills

a string with the string representation of the MP_T’s value in a base
between two and 36, inclusive.

〈functions 374〉+≡
char *MP_tostr(char *str, int size, int base, T x) {

assert(x);
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assert(base >= 2 && base <= 36);
assert(str == NULL || size > 1);
if (str == NULL) {

〈size ← number of characters to represent x in base 400〉
str = ALLOC(size);

}
memcpy(tmp[1], x, nbytes);
XP_tostr(str, size, base, nbytes, tmp[1]);
return str;

}

If str is null, MP_tostr allocates a string long enough to hold x’s repre-
sentation in base. MP_tostr uses AP_tostr’s trick for computing the
size of the string: str must have at least  characters, where k
is chosen so that  is the largest power of two less than or equal to
base (see page 352), plus one for the terminating null character.

〈size ← number of characters to represent x in base 400〉≡
{

int k;
for (k = 5; (1<<k) > base; k--)

;
size = nbits/k + 1 + 1;

}

The Fmt-style conversion functions format an unsigned or signed
MP_T. Each consumes two arguments: an MP_T and a base between two
and 36, inclusive. MP_fmtu calls MP_tostr to convert its MP_T, and calls
Fmt_putd to emit the converted result. Recall that Fmt_putd emits a
number in the style of printf’s %d conversion.

〈functions 374〉+≡
void MP_fmtu(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision) {
T x;
char *buf;

assert(app && flags);
x = va_arg(*app, T);
assert(x);

nbits k⁄
2
k
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buf = MP_tostr(NULL, 0, va_arg(*app, int), x);
Fmt_putd(buf, strlen(buf), put, cl, flags,

width, precision);
FREE(buf);

}

MP_fmt has a bit more work to do, because it interprets an MP_T as a
signed number, but MP_tostr accepts only unsigned MP_Ts. Thus,
MP_fmt itself allocates the buffer, so that it can include a leading sign, if
necessary.

〈functions 374〉+≡
void MP_fmt(int code, va_list *app,

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision) {
T x;
int base, size, sx;
char *buf;

assert(app && flags);
x = va_arg(*app, T);
assert(x);
base = va_arg(*app, int);
assert(base >= 2 && base <= 36);
sx = sign(x);
〈if x < 0, negate x 386〉
〈size ← number of characters to represent x in base 400〉
buf = ALLOC(size+1);
if (sx) {

buf[0] = '-';
MP_tostr(buf + 1, size, base, x);

} else
MP_tostr(buf, size + 1, base, x);

Fmt_putd(buf, strlen(buf), put, cl, flags,
width, precision);

FREE(buf);
}
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Further Reading

Multiple-precision arithmetic is often used in compilers, and sometimes
it must be used. For example, Clinger (1990) shows that converting
floating-point literals to their corresponding IEEE floating-point repre-
sentations sometimes requires multiple-precision arithmetic to achieve
the best accuracy.

Schneier (1996) is a comprehensive survey of cryptography. This book
is practical, and includes C implementations for some of the algorithms
it describes. It also has extensive bibliography that is a good starting
point for deeper investigations.

As shown on page 308, multiplying two n-digit numbers takes time
proportional to . Section 20.6 in Press et al. (1992) shows how to use
the fast Fourier transform to implement multiplication in time propor-
tional to n lg n lg lg n. It also implements x/y by computing the recipro-
cal 1/y and multiplying it by x. This approach requires multiple-precision
numbers with fractional parts.

Exercises

19.1 The MP functions do a lot of unnecessary work when nbits is a
multiple of eight. Can you revise the MP implementation to avoid
this work when nbits mod 8 is zero? Implement your scheme and
measure its benefits — or costs.

19.2 For many applications, once chosen, nbits never changes. Imple-
ment a program generator that, given a specific value for nbits,
generates an interface and an implementation for nbits-bit arith-
metic, MP_nbits, that is otherwise identical to MP.

19.3 Design and implement an interface for arithmetic on fixed-point,
multiple-precision numbers; that is, numbers with a whole part
and a fractional part. Clients should be able to specify the number
of digits in both parts. Be sure to specify the details of rounding.
Section 20.6 in Press et al. (1992) includes some useful algorithms
for this exercise.

19.4 Design and implement an interface for arithmetic on floating-
point numbers in which clients can specify the number of bits in

n2
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the exponent and in the significand. Read Goldberg (1991) before
attempting this exercise.

19.5 The XP and MP functions do not use const-qualified parameters for
the reasons detailed on page 300. There are, however, other defi-
nitions for XP_T and MP_T that work correctly with const. For
example, if T is defined by

typedef unsigned char T[];

then “const T” means “array of constant unsigned char,” and, for
example, MP_add could be declared by

unsigned char *MP_add(T z, const T x, const T y);

In MP_add, x and y have type “pointer to constant unsigned char,”
because array types in formal parameters “decay” to the corre-
sponding pointer types. Of course, const doesn’t prevent acciden-
tal aliasing, because the same array may be passed to both z and
x, for example. This declaration for MP_add illustrates the disad-
vantage of defining T as an array type: T cannot be used as a
return type, and clients cannot declare variables of type T. This
kind of array type is useful only for parameters. This problem can
be avoided by defining T as a typedef for unsigned char:

typedef unsigned char T;

With this definition, the declaration for MP_add can be either of:

T *MP_add(T z[], const T x[], const T y[]);
T *MP_add(T *z, T *x, T *y);

Reimplement XP and its clients, AP, MP, calc, and mpcalc, using
both these definitions for T. Compare the readability of the results
with the originals.
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he typical C program is a sequential, or single-threaded, program.
That is, there is one locus of control in the program. A program’s
location counter gives the address of each instruction as it is exe-

cuted. Most of the time, the location is advanced sequentially, one
instruction at a time. Occasionally, a jump or call instruction causes the
location counter to change to the jump destination or to the address of
the function called. The values of the location counter trace out a path
through the program that describes its execution, and this path looks
like a thread through the program.

A concurrent or multithreaded program has more than one thread,
and, in the most general case, these threads are all executing at the same
time, at least conceptually. This concurrent execution is what makes
writing multithreaded applications so much more complicated than writ-
ing single-threaded applications, because the threads can interact with
one another in potentially nondeterministic ways. The three interfaces in
this chapter export functions to create and manage threads, to synchro-
nize the actions of cooperating threads, and to communicate among
threads.

Threads are useful for applications that have inherent concurrent
activities. Graphical user interfaces are a prime example; keyboard
inputs, mouse movements and clicks, and display output all occur simul-
taneously. In multithreaded systems, a thread can be dedicated to each
of these activities without concern for the others. This approach helps
simplify the implementation of a user interface because each of these
threads can be designed and written as if it were a sequential program,
except in the few places where they must communicate or synchronize
with other threads.

T
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On multiprocessor computers, threads can improve performance in
applications that can be decomposed naturally into relatively indepen-
dent subtasks. Each subtask is run in a separate thread, and they all run
concurrently and thus finish sooner than if the subtasks were done
sequentially. Section 20.2 describes a sorting program that uses this
approach.

Threads can also help structure sequential programs because they
have state: A thread includes enough associated information for it to be
stopped, and then subsequently resumed where it left off. A typical UNIX

C compiler, for example, consists of a separate preprocessor, a compiler
proper, and an assembler. The preprocessor reads the source code,
includes headers and expands macros, and emits the resulting source;
the compiler reads and parses the expanded source, generates code, and
emits assembly language; and the assembler reads the assembly lan-
guage and emits object code. These phases usually communicate with
one another by reading and writing temporary files. With threads, each
phase could run as a separate thread in a single application, eliminating
the temporary files and the overhead of reading, writing, and deleting
them. The compiler itself might also use separate threads for the lexical
analyzer and for the parser. Section 20.2 illustrates this use of threads in
a pipeline that computes prime numbers.

Some systems were not designed for multithreaded applications,
which limits the usefulness of threads. For example, most UNIX systems
have blocking I/O primitives. That is, when a thread issues a read
request, the UNIX process and all the threads in it wait for that request to
be filled. On these systems, threads cannot overlap useful computation
with I/O. Similar comments apply to signal handling. Most UNIX systems
associate signals and signal handlers with the process, not with the indi-
vidual threads in the process.

Thread systems support either user-level or kernel-level threads, or
perhaps both. User-level threads are implemented completely in user
mode, without help from the operating system. User-level thread pack-
ages often have some of the drawbacks described above. On the bright
side, user-level threads can be very efficient. The Thread interface
described in the next section provides user-level threads.

Kernel-level threads use operating system facilities to provide, for
example, nonblocking I/O and per-thread signal handling. Newer operat-
ing systems have kernel-level threads and use them to provide thread
interfaces. Some operations in these interfaces require system calls, how-
ever, which usually cost more than similar operations in user-level
threads.
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Even on systems with kernel-level threads, standard libraries may not
be reentrant or thread-safe. A reentrant function changes only locals and
parameters. A function that changes global variables or uses static vari-
ables to hold intermediate results is nonreentrant. Typical implementa-
tions of some of the functions in the standard C library are nonreentrant.
If two or more activations of a nonreentrant function exist at the same
time, they can modify these intermediate values in unpredictable ways.
In a single-threaded program, multiple activations can exist simulta-
neously  because of direct and indirect recursion. In a multithreaded pro-
gram, multiple activations occur because different threads can call the
same function simultaneously. Two threads calling a nonreentrant func-
tion at the same time will thus modify the same storage with undefined
results.

A thread-safe function uses synchronization mechanisms to manage
access to shared data, and thus may or may not be reentrant. A thread-
safe function can be called by more than one thread simultaneously
without concern for synchronization. This makes them easier for multi-
threaded clients to use, but comes with the cost of the synchronization,
even for single-threaded clients.

Standard C doesn’t require that the library functions be reentrant or
thread-safe, so programmers must assume the worst and use synchroni-
zation primitives to ensure that only one thread at a time executes a non-
reentrant library function.

Most of the functions in this book are not thread-safe, but are reen-
trant. A few, like Text_map, are nonreentrant, and multithreaded clients
must make their own synchronization arrangements. For example, if sev-
eral threads share a Table_T, they must ensure that only one of them at
a time calls the functions in the Table interface with that Table_T, as
explained below.

Some thread interfaces are designed for both user-level and kernel-
level threads. The Open Software Foundation’s Distributed Computing
Environment, DCE for short, is available on most variants of UNIX, Open-
VMS, OS/2, Windows NT, and Windows 95. Typically, DCE threads use
kernel-level threads when the host operating system supports them; oth-
erwise, DCE threads are implemented as user-level. With more than 50
functions, the DCE thread interface is considerably larger than the three
interfaces in this chapter combined, but the DCE interface does more.
For example, its implementations support thread-level signals and pro-
tect calls to the standard library functions with appropriate
synchronization.
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Sun Microsystems’s Solaris 2 operating system has a two-level thread
facility. Kernel-level threads are called lightweight processes, or LWPs.
Every UNIX “heavyweight” process has at least one LWP, and Solaris runs
a UNIX process by running one or more of its LWPs. Kernel support for
LWPs includes nonblocking I/O and per-LWP signals. User-level threads
are provided by an interface similar to, but larger than, Thread, and its
implementation runs user-level threads on LWPs. One LWP can service
one or more user-level threads. Solaris multiplexes the processors
between the LWPs, which multiplex themselves between user-level
threads.

The POSIX (Portable Operating Systems Interface) thread interface —
pthreads for short — is emerging as the leading standard thread inter-
face. Most vendors now offer a pthreads implementation, perhaps based
on their own thread interfaces. For example, Sun Microsystems uses
Solaris 2 LWPs to implement pthreads. The pthreads facilities are a
superset of those exported by Thread and Sem. The larger POSIX inter-
face handles per-thread signals, includes several synchronization mecha-
nisms, and specifies which standard C library functions must be thread-
safe.

20.1 Interfaces

Each of the three interfaces in this chapter is small. They’re divided into
separate interfaces because each has a related but distinct purpose.

In theory, all running threads execute concurrently, but in practice,
there are usually more threads than real processors. The processors are
thus multiplexed between the running threads according to a scheduling
policy. With nonpreemptive scheduling, a running thread may execute a
function that causes it to become blocked or to otherwise relinquish its
processor. With preemptive scheduling, a running thread gives up its
processor implicitly. This policy is usually implemented with a clock
interrupt, which periodically interrupts the running thread and gives its
processor to another running thread. A quantum is the amount of time a
running thread runs before it is preempted, at which point a context
switch suspends the current thread and resumes another (perhaps the
same) running thread. Context switches also occur with nonpreemptive
scheduling when a running thread blocks. The Thread interface uses pre-
emption when its implementation supports it.

Atomic actions execute without preemption. A thread that starts exe-
cuting an atomic action will complete that action without interruption by
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another thread. If a thread calls an atomic function, the call is executed
without interruption. Most of the functions described in this chapter
must be atomic so that their results and effects are predictable. Atomic
functions may block, however; the synchronization functions in the Sem
interface are examples.

As the last two paragraphs show, concurrent programming comes
with its own jargon, and different terms are often used for the same con-
cepts. For example, threads may be called lightweight processes, tasks,
subtasks, or microtasks; synchronization mechanisms may be called
events, condition variables, synchronizing resources, and messages.

20.1.1 Threads

The Thread interface exports an exception and the functions that sup-
port thread creation.

〈thread.h〉≡
#ifndef THREAD_INCLUDED
#define THREAD_INCLUDED
#include "except.h"

#define T Thread_T
typedef struct T *T;

extern const Except_T Thread_Failed;
extern const Except_T Thread_Alerted;

extern int  Thread_init (int preempt, ...);
extern T    Thread_new  (int apply(void *),

void *args, int nbytes, ...);
extern void Thread_exit (int code);
extern void Thread_alert(T t);
extern T    Thread_self (void);
extern int  Thread_join (T t);
extern void Thread_pause(void);

#undef T
#endif

Calls to all of the functions in this interface are atomic.
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Thread_init initializes the thread system, and must be called before
any of the other functions. It is a checked runtime error to call any other
function in this interface, or in the Sem and Chan interfaces, before call-
ing Thread_init, or to call Thread_init more than once.

If preempt is zero, Thread_init initializes the thread system to sup-
port only nonpreemptive scheduling, and returns one. If preempt is one,
the thread system is initialized for preemptive scheduling. If preemption
is supported, Thread_init returns one. Otherwise, the system is initial-
ized for nonpreemptive scheduling, and Thread_init returns zero.

Typical clients initialize the thread system in main. For example, for a
client that needs preemption, main usually has the following form.

int main(int argc, char *argv[]) {
int preempt;
…
preempt = Thread_init(1, NULL);
assert(preempt == 1);
…
Thread_exit(EXIT_SUCCESS);
return EXIT_SUCCESS;

}

Thread_init may also accept additional implementation-dependent
arguments, often specified with name-value pairs. For example, for
implementations that support priorities,

preempt = Thread_init(1, "priorities", 4, NULL);

might initialize the thread system with four priority levels. Unknown
optional arguments are usually ignored. Implementations that use this
approach usually expect a null pointer as the terminating argument.

As the code template above suggests, threads must terminate execu-
tion by calling Thread_exit. The integer argument is an exit code, much
like the one passed to the standard library’s exit function. This value is
made available to other threads that may be waiting for the calling
thread’s demise, as explained below. If there is only one thread in the
system, calling Thread_exit is equivalent to calling exit.

Thread_new creates a new thread and returns its thread handle, which
is an opaque pointer. Thread handles are passed to Thread_join and
Thread_alert, and are returned by Thread_self. The new thread runs
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independently of the thread that created it. When the new thread begins
execution, it executes the equivalent of

void *p = ALLOC(nbytes);
memcpy(p, args, nbytes);
Thread_exit(apply(p));

That is, apply is called with a copy of the nbytes bytes pointed to by
args, which is presumed to point to argument data for the new thread.
args is often a pointer to a structure whose fields hold apply’s argu-
ments, and nbytes is the size of that structure. The new thread starts
execution with an empty exception stack: It does not inherit the excep-
tion state set up by TRY-EXCEPT statements in the calling thread. Excep-
tions are thread-specific; TRY-EXCEPT statements executed in one thread
cannot affect the exceptions in another one.

If args is nonnull and nbytes is zero, the new thread executes the
equivalent of

Thread_exit(apply(args));

That is, args is passed to apply unmodified. If args is null, the new
thread executes the equivalent of

Thread_exit(apply(NULL));

It is a checked runtime error for apply to be null, or for args to be non-
null and nbytes to be negative. If args is null, nbytes is ignored.

Like Thread_init, Thread_new may take additional implementation-
specific arguments, often specified as name-value pairs. An example is

Thread_T t;
t = Thread_new(apply, args, nbytes, "priority", 2, NULL);

which creates a new thread with priority two. As this example suggests,
optional arguments should be terminated with a null pointer.

Thread creation is synchronous: Thread_new returns after the new
thread has been created and has received its argument, but perhaps
before the new thread begins execution. Thread_new raises
Thread_Failed if it cannot create the new thread because of resource
limitations. For example, implementations may limit the number of
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threads that can exist simultaneously; when this limit is exceeded,
Thread_new raises Thread_Failed.

Thread_exit(code) terminates execution of the calling thread.
Threads waiting for the termination of the calling thread (by virtue of
Thread_join) are resumed, and the value of code is returned as the
result of calling Thread_join in each of the resumed threads. When the
last thread calls Thread_exit, the entire program terminates by calling
exit(code).

Thread_join(t) causes the calling thread to suspend execution until
thread t terminates by calling Thread_exit. When thread t terminates,
the calling thread is resumed, and Thread_join returns the integer that
was passed to Thread_exit by t. If t names a nonexistent thread,
Thread_join returns -1 immediately.  As a special case, the call
Thread_join(NULL) waits for all threads to terminate, including those
that might be created by other threads. In this case, Thread_join
returns zero. It is a checked runtime error for a nonnull t to name the
calling thread, or for more than one thread to specify a null t.
Thread_join can raise Thread_Alerted.

Thread_self returns the thread handle of the calling thread.
Thread_pause causes the calling thread to relinquish the processor to

another thread that’s ready to run, if there is one. Thread_pause is used
primarily in nonpreemptive scheduling; there’s no need to call
Thread_pause with preemptive scheduling.

Threads have three states: running, blocked, and dead. A new thread
begins as running. If it calls Thread_join, it becomes blocked, waiting
for another thread to terminate. When a thread calls Thread_exit, it
becomes dead. Threads may also become blocked when they call a com-
munications function exported by Chan or a synchronization function
exported by Sem. It is a checked runtime error for there to be no running
threads.

Thread_alert(t) sets t’s “alert-pending” flag. If t is blocked,
Thread_alert makes t runnable, and arranges for it to clear its alert-
pending flag and to raise Thread_Alerted the next time it runs. If t is
already running, Thread_alert arranges for t to clear its flag and to
raise Thread_Alerted the next time it calls Thread_join or a blocking
communications or synchronization function. It is a checked runtime
error to pass to Thread_alert a null handle or to a handle of a nonexist-
ent thread.

There is no way to terminate a running thread; threads must terminate
themselves, either by calling Thread_exit or by responding to
Thread_Alerted. If a thread doesn’t catch Thread_Alerted, the entire
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program will terminate with an uncaught exception error. The most com-
mon response to an alert is to terminate the thread, which can be accom-
plished with apply functions that have the following general form.

int apply(void *p) {
TRY

…
EXCEPT(Thread_Alerted)

Thread_exit(EXIT_FAILURE);
END_TRY;
Thread_exit(EXIT_SUCCESS);

}

The TRY-EXCEPT statement must be executed by the thread itself. Code
like

Thread_T t;
TRY

t = Thread_new(…);
EXCEPT(Thread_Alerted)

Thread_exit(EXIT_FAILURE);
END_TRY;
Thread_exit(EXIT_SUCCESS);

is incorrect, because the TRY-EXCEPT applies to the calling thread, not to
the new thread.

20.1.2 General Semaphores

General, or counting, semaphores are low-level synchronization primi-
tives. Abstractly, a semaphore is a protected integer that can be in-
cremented and decremented atomically. The two operations on a
semaphore s are wait and signal. signal(s) is logically equivalent to
incrementing it atomically. wait(s) waits for s to become positive, then
decrements it atomically:

while (s <= 0)
;

s = s - 1;
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Of course, actual implementations block the calling thread; they don’t
loop as this explanation suggests.

The Sem interface wraps the counter in a structure, and exports an ini-
tialization function and the two synchronization functions:

〈sem.h〉≡
#ifndef SEM_INCLUDED
#define SEM_INCLUDED

#define T Sem_T
typedef struct T {

int count;
void *queue;

} T;

〈exported macros 416〉

extern void Sem_init  (T *s, int count);
extern T   *Sem_new   (int count);
extern void Sem_wait  (T *s);
extern void Sem_signal(T *s);

#undef T
#endif

A semaphore is a pointer to an instance of a Sem_T structure. This inter-
face reveals the innards of Sem_Ts, but only so that they can be allocated
statically or embedded in other structures. Clients must treat Sem_T as
an opaque type and access fields of Sem_T values only via the functions
in this interface; it is an unchecked runtime error to access the fields of a
Sem_T directly. It is a checked runtime error to pass a null Sem_T pointer
to any function in this interface.

Sem_init accepts a pointer to a Sem_T and an initial value for its
counter; it then initializes the semaphore’s data structures and sets its
counter to the specified initial value. Once initialized, a pointer to the
Sem_T can be passed to the two synchronization functions. It is an
unchecked runtime error to call Sem_init on the same semaphore more
than once.

Sem_new is the atomic equivalent of
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Sem_T *s;
NEW(s);
Sem_init(s, count);

Sem_new can raise Mem_Failed.
Sem_wait accepts a pointer to a Sem_T, waits for its counter to

become positive, decrements the counter by one, and returns. This oper-
ation is atomic. If the calling thread’s alert-pending flag is set, Sem_wait
raises Thread_Alerted immediately and does not decrement the
counter. If the alert-pending flag is set while the thread is blocked, the
thread stops waiting and raises Thread_Alerted without decrementing
the counter. It is a checked runtime error to call Sem_wait before calling
Thread_init.

Sem_signal accepts a pointer to a Sem_T and increments its counter
atomically. If other threads are waiting for the counter to become posi-
tive and the Sem_signal operation causes it to become positive, one of
those threads will complete its call to Sem_wait. It is a checked runtime
error to call Sem_wait before calling Thread_init.

It is an unchecked runtime error to pass an uninitialized semaphore to
Sem_wait or to Sem_signal.

The queuing implicit in the Sem_wait and Sem_signal operations is
first-in, first-out, and it’s fair. That is, a thread t blocked on a semaphore
s will be resumed before other threads that call Sem_wait(&s) after t.

A binary semaphore, or mutex, is a general semaphore whose counter
is zero or one. A mutex is used for mutual exclusion. For example,

Sem_T mutex;
Sem_init(&mutex, 1);
…
Sem_wait(&mutex);
statements
Sem_signal(&mutex);

creates and initializes a binary semaphore, and uses it to ensure that
only one thread at a time executes statements, which is an example of a
critical region.

This idiom is so common that Sem exports macros for it that imple-
ment a LOCK-END_LOCK statement with the syntax:
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LOCK(mutex)
statements

END_LOCK

where mutex is a binary semaphore initialized to one. The LOCK state-
ment helps avoid the common and disastrous errors of omitting the call
to Sem_signal at the end of a critical region, and of calling Sem_signal
with the wrong semaphore.

〈exported macros 416〉≡
#define LOCK(mutex) do { Sem_T *_yymutex = &(mutex); \

Sem_wait(_yymutex);
#define END_LOCK Sem_signal(_yymutex); } while (0)

If statements can raise an exception, then LOCK-END_LOCK must not be
used, because if an exception occurs, the mutex will not be released. In
this case, the proper idiom is

TRY
Sem_wait(&mutex);
statements

FINALLY
Sem_signal(&mutex);

END_TRY;

The FINALLY clause ensures that the mutex is released whether or not an
exception occurred. A reasonable alternative is to incorporate this idiom
in the definitions for LOCK and END_LOCK, but then every use of LOCK-
END_LOCK incurs the overhead of the TRY-FINALLY statement.

Mutexes are often embedded in ADTs to make accessing them thread-
safe. For example,

typedef struct {
Sem_T mutex;
Table_T table;

} Protected_Table_T;

associates a mutex with a table. The code
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Protected_Table_T tab;
tab.table = Table_new(…);
Sem_init(&tab.mutex, 1);

creates a protected table, and

LOCK(tab.mutex)
value = Table_get(tab.table, key);

END_LOCK;

fetches the value associated with key atomically. Notice that LOCK takes
the mutex, not its address. Since Table_put can raise Mem_Failed, addi-
tions to tab should be made with code like

TRY
Sem_wait(&tab.mutex);
Table_put(tab.table, key, value);

FINALLY
Sem_signal(&tab.mutex);

END_TRY;

20.1.3 Synchronous Communication Channels

The Chan interface provides synchronous communication channels that
can be used to pass data between threads.

〈chan.h〉≡
#ifndef CHAN_INCLUDED
#define CHAN_INCLUDED

#define T Chan_T
typedef struct T *T;

extern T   Chan_new    (void);
extern int Chan_send   (T c, const void *ptr, int size);
extern int Chan_receive(T c,       void *ptr, int size);

#undef T
#endif
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Chan_new creates, initializes, and returns a new channel, which is a
pointer. Chan_new can raise Mem_Failed.

Chan_send accepts a channel, a pointer to a buffer that holds the data
to be sent, and the number of bytes that buffer holds. The calling thread
waits until another thread calls Chan_receive with the same channel;
when this rendezvous occurs, the data is copied from the sender to the
receiver and both calls return. Chan_send returns the number of bytes
accepted by the receiver.

Chan_receive accepts a channel, a pointer to a buffer that is to
receive the data, and the maximum number of bytes that buffer can hold.
The caller waits until another thread calls Chan_send with the same
channel; when this rendezvous occurs, the data is copied to the receiver
from the sender, and both calls return. If the sender supplies more than
size bytes, the excess bytes are discarded. Chan_receive returns the
number of bytes accepted.

Chan_send and Chan_receive both accept a size of zero. It is a
checked runtime error to pass a null Chan_T, a null ptr, or a negative
size to either function. If the calling thread’s alert-pending flag is set,
Chan_send and Chan_receive raise Thread_Alerted immediately. If
the alert-pending flag is set while the thread is blocked, the thread stops
waiting and raises Thread_Alerted. In this case, the data may or may
not have been transmitted.

It is a checked runtime error to call any function in this interface
before calling Thread_init.

20.2 Examples

The three programs in this section illustrate simple uses of threads and
channels, and the use of semaphores for mutual exclusion. Chan’s imple-
mentation, detailed in the next section, is an example of the use of sema-
phores for synchronization.

20.2.1 Sorting Concurrently

With preemption, threads execute concurrently, at least conceptually. A
group of cooperating threads can work on independent parts of a prob-
lem. On a system with multiple processors, this approach uses concur-
rency to reduce overall execution time. Of course, on a single-processor
system, the program will actually run a bit slower, because of the over-
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head of switching between threads. This approach does, however, illus-
trate the use of the Thread interface.

Sorting is a problem that can be easily decomposed into independent
subparts. sort generates a specified number of random integers, sorts
them concurrently, and checks that the result is sorted:

〈sort.c〉≡
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include "assert.h"
#include "fmt.h"
#include "thread.h"
#include "mem.h"

〈sort types 421〉
〈sort data 422〉
〈sort functions 420〉

main(int argc, char *argv[]) {
int i, n = 100000, *x, preempt;

preempt = Thread_init(1, NULL);
assert(preempt == 1);
if (argc >= 2)

n = atoi(argv[1]);
x = CALLOC(n, sizeof (int));
srand(time(NULL));
for (i = 0; i < n; i++)

x[i] = rand();
sort(x, n, argc, argv);
for (i = 1; i < n; i++)

if (x[i] < x[i-1])
break;

assert(i == n);
Thread_exit(EXIT_SUCCESS);
return EXIT_SUCCESS;

}

time, srand, and rand are standard C library functions. time returns
some integral encoding of the calendar time, which srand uses to set the
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seed for generating a sequence of pseudo-random numbers. Subsequent
calls to rand return the numbers in this sequence. sort begins by filling
x[0..n-1] with n random numbers.

The function sort is an implementation of quicksort. The textbook
implementation partitions the array into two subarrays separated by a
“pivot” value, and then calls itself recursively to sort each subarray. The
recursion bottoms out when the subarrays are empty.

void quick(int a[], int lb, int ub) {
if (lb < ub) {

int k = partition(a, lb, ub);
quick(a, lb, k - 1);
quick(a, k + 1, ub);

}
}

void sort(int *x, int n, int argc, char *argv[]) {
quick(x, 0, n - 1);

}

partition(a, i, j) arbitrarily picks a[i] as the pivot value. It rear-
ranges a[i..j] so that all the values in a[i..k-1] are less than or equal to
the pivot, v; all the values in a[k+1..j] are greater than v; and a[k]
holds v.

〈sort functions 420〉≡
int partition(int a[], int i, int j) {

int v, k, t;

j++;
k = i;
v = a[k];
while (i < j) {

i++; while (a[i] < v && i < j) i++;
j--; while (a[j] > v         ) j--;
if (i < j) { t = a[i]; a[i] = a[j]; a[j] = t; }

}
t = a[k]; a[k] = a[j]; a[j] = t;
return j;

}
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The last exchange in partition leaves v in a[k], and partition
returns k.

The recursive calls to quick can be executed concurrently by separate
threads. First, quick’s arguments must be packaged in a structure so
that quick can be passed to Thread_new:

〈sort types 421〉≡
struct args {

int *a;
int lb, ub;

};

〈sort functions 420〉+≡
int quick(void *cl) {

struct args *p = cl;
int lb = p->lb, ub = p->ub;

if (lb < ub) {
int k = partition(p->a, lb, ub);
〈quick 421〉

}
return EXIT_SUCCESS;

}

The recursive calls are executed in a separate thread, but only if there are
enough elements in the subarray to make it worthwhile. For example,
a[lb..k-1] is sorted by

〈quick 421〉≡
p->lb = lb;
p->ub = k - 1;
if (k - lb > cutoff) {

Thread_T t;
t = Thread_new(quick, p, sizeof *p, NULL);
Fmt_print("thread %p sorted %d..%d\n", t, lb, k - 1);

} else
quick(p);

where cutoff gives the minimum number of elements required to sort
the subarray in a separate thread. Similarly, a[k+1..ub] is sorted by
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〈quick 421〉+≡
p->lb = k + 1;
p->ub = ub;
if (ub - k > cutoff) {

Thread_T t;
t = Thread_new(quick, p, sizeof *p, NULL);
Fmt_print("thread %p sorted %d..%d\n", t, k + 1, ub);

} else
quick(p);

sort makes the initial call to quick, which spawns many threads as the
sort progresses; sort then calls Thread_join to wait for all of these
threads to terminate:

〈sort data 422〉≡
int cutoff = 10000;

〈sort functions 420〉+≡
void sort(int *x, int n, int argc, char *argv[]) {

struct args args;

if (argc >= 3)
cutoff = atoi(argv[2]);

args.a = x;
args.lb = 0;
args.ub = n - 1;
quick(&args);
Thread_join(NULL);

}

Executing sort with the default values of n and cutoff, 100,000 and
10,000, spawns 18 threads:

% sort
thread 69f08 sorted 0..51162
thread 6dfe0 sorted 51164..99999
thread 72028 sorted 51164..73326
thread 76070 sorted 73328..99999
thread 6dfe0 sorted 51593..73326
thread 72028 sorted 73328..91415
thread 7a0b8 sorted 51593..69678
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thread 7e100 sorted 73328..83741
thread 82148 sorted 3280..51162
thread 69f08 sorted 73328..83614
thread 7e100 sorted 51593..67132
thread 6dfe0 sorted 7931..51162
thread 69f08 sorted 14687..51162
thread 6dfe0 sorted 14687..37814
thread 72028 sorted 37816..51162
thread 69f08 sorted 15696..37814
thread 6dfe0 sorted 15696..26140
thread 76070 sorted 26142..37814

Different executions sort different values, so the number of threads cre-
ated and the traces printed by quick will be different for each execution.

sort has an important bug: It fails to protect the calls to Fmt_print in
quick. Fmt_print is not guaranteed to be reentrant, and many of the
routines in the C library are nonreentrant. There’s no guarantee that
printf or any other library routine will work correctly if it’s interrupted
and later resumed.

20.2.2 Critical Regions

Any data that can be accessed by more than one thread in a preemptive
system must be protected. Access must be limited to a critical region in
which only one thread at a time is permitted. spin is a simple example of
the right way and wrong way to access shared data.

〈spin.c〉≡
#include <stdio.h>
#include <stdlib.h>
#include "assert.h"
#include "fmt.h"
#include "thread.h"
#include "sem.h"

#define NBUMP 30000

〈spin types 425〉
〈spin functions 424〉

int n;
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int main(int argc, char *argv[]) {
int m = 5, preempt;

preempt = Thread_init(1, NULL);
assert(preempt == 1);
if (argc >= 2)

m = atoi(argv[1]);
n = 0;
〈increment n unsafely 424〉
Fmt_print("%d == %d\n", n, NBUMP*m);
n = 0;
〈increment n safely 425〉
Fmt_print("%d == %d\n", n, NBUMP*m);
Thread_exit(EXIT_SUCCESS);
return EXIT_SUCCESS;

}

spin spawns m threads that each increment n NBUMP times. The first m
threads don’t ensure that n is incremented atomically:

〈increment n unsafely 424〉≡
{

int i;
for (i = 0; i < m; i++)

Thread_new(unsafe, &n, 0, NULL);
Thread_join(NULL);

}

main fires off m threads, each of which calls unsafe with a pointer to a
pointer to n:

〈spin functions 424〉≡
int unsafe(void *cl) {

int i, *ip = cl;

for (i = 0; i < NBUMP; i++)
*ip = *ip + 1;

return EXIT_SUCCESS;
}
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unsafe is wrong because the execution of *ip = *ip + 1 might be inter-
rupted. If it’s interrupted just after *ip is fetched, and other threads
increment *ip, the value assigned to *ip will be incorrect.

Each of the second m threads call

〈spin types 425〉≡
struct args {

Sem_T *mutex;
int *ip;

};

〈spin functions 424〉+≡
int safe(void *cl) {

struct args *p = cl;
int i;

for (i = 0; i < NBUMP; i++)
LOCK(*p->mutex)

*p->ip = *p->ip + 1;
END_LOCK;

return EXIT_SUCCESS;
}

safe ensures that only one thread at a time executes the critical region,
which is statement *ip = *ip + 1. main initializes one binary semaphore
that all the threads use to enter the critical region in safe:

〈increment n safely 425〉≡
{

int i;
struct args args;
Sem_T mutex;
Sem_init(&mutex, 1);
args.mutex = &mutex;
args.ip = &n;
for (i = 0; i < m; i++)

Thread_new(safe, &args, sizeof args, NULL);
Thread_join(NULL);

}
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Preemption can occur at any time, so each execution of spin can pro-
duce different results for the threads that use unsafe:

% spin
87102 == 150000
150000 == 150000
% spin
148864 == 150000
150000 == 150000

20.2.3 Generating Primes

The last example illustrates a pipeline implemented by communication
channels. sieve N computes and prints the prime numbers less than or
equal to N. For example:

% sieve 100
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 
79 83 89 97

sieve is an implementation of the well-known Sieve of Eratosthenes for
computing primes, in which each “sieve” is a thread that discards multi-
ples of its primes. Channels connect these threads to form a pipeline, as
depicted in Figure 20.1. The source thread (the white box) generates two
followed by the odd integers, and fires them down the pipe. The filters
(the light gray boxes) between the source and the sink (the dark gray
box) discard numbers that are multiples of their primes, and pass the
others down the pipe. The sink also filters out its primes, but if a num-
ber gets by the sink’s filter, it is a prime. Each box in Figure 20.1 is a
thread; the numbers in each box are the primes associated with that

Figure 20.1 A prime-number sieve
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thread, and the lines between the boxes that form the pipeline are
channels.

There are n primes attached to the sink and to each filter. When the
sink has accumulated n primes — 5 in Figure 20.1 — it spawns a fresh
copy of itself and turns itself into a filter. Figure 20.2 shows how the
sieve expands as it computes the primes up to and including 100.

After sieve initializes the thread system, it creates threads for the
source and for the sink, connects them with a new channel, and exits:

〈sieve.c〉≡
#include <stdio.h>
#include <stdlib.h>
#include "assert.h"
#include "fmt.h"
#include "thread.h"
#include "chan.h"

struct args {
Chan_T c;
int n, last;

};

〈sieve functions 429〉

int main(int argc, char *argv[]) {
struct args args;

Thread_init(1, NULL);
args.c = Chan_new();
Thread_new(source, &args, sizeof args, NULL);
args.n    = argc > 2 ? atoi(argv[2]) : 5;
args.last = argc > 1 ? atoi(argv[1]) : 1000;
Thread_new(sink,   &args, sizeof args, NULL);
Thread_exit(EXIT_SUCCESS);
return EXIT_SUCCESS;

}

source emits integers on its “output” channel, which is passed in the c
field of the args structure, which is the only field source needs:
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Figure 20.2 Evolution of the sieve for the primes up to 100
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〈sieve functions 429〉≡
int source(void *cl) {

struct args *p = cl;
int i = 2;

if (Chan_send(p->c, &i, sizeof i))
for (i = 3; Chan_send(p->c, &i, sizeof i); )

i += 2;
return EXIT_SUCCESS;

}

source sends two and the succeeding odd integers as long as a receiver
accepts them. Once the sink has printed all the primes, it reads zero
bytes from its input channel, which signals its upstream filter that the
job is done, and terminates. Each filter does likewise, until source
hears that its receiver read zero bytes, at which point it terminates.

A filter reads integers from its input channel and writes potential
primes to its output channel, until the thread consuming the potential
primes has had its fill:

〈sieve functions 429〉+≡
void filter(int primes[], Chan_T input, Chan_T output) {

int j, x;

for (;;) {
Chan_receive(input, &x, sizeof x);
〈x is a multiple of primes[0...] 429〉
if (primes[j] == 0)

 if (Chan_send(output, &x, sizeof x) == 0)
break;

}
Chan_receive(input, &x, 0);

}

primes[0..n-1] hold the primes associated with a filter. This array is
terminated with a zero, so the search loop zips down primes until it
either determines that x is not a prime or bumps into the terminator:

〈x is a multiple of primes[0...] 429〉≡
for (j = 0; primes[j] != 0 && x%primes[j] != 0; j++)

;
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As suggested by the code above, the search fails when it ends at the ter-
minating zero. In this case, x might be a prime, so it is sent down the out-
put channel to another filter or to the sink.

All of the action is in the sink; the c field of args holds the sink’s
input channel, the n field gives the number of primes per filter, and
the last field holds N, which gives the range of the primes desired. sink
initializes its primes array and listens to its input:

〈sieve functions 429〉+≡
int sink(void *cl) {

struct args *p = cl;
Chan_T input = p->c;
int i = 0, j, x, primes[256];

primes[0] = 0;
for (;;) {

Chan_receive(input, &x, sizeof x);
 〈x is a multiple of primes[0...] 429〉

if (primes[j] == 0) {
〈x is prime 430〉

}
}
Fmt_print("\n");
Chan_receive(input, &x, 0);

 return EXIT_SUCCESS;
}

If x isn’t a multiple of one of the nonzero values in primes, then it is a
prime, and sink prints it and adds it to primes.

〈x is prime 430〉≡
if (x > p->last)

break;
Fmt_print(" %d", x);
primes[i++] = x;
primes[i] = 0;
if (i == p->n)

〈spawn a new sink and call filter 431〉

When x exceeds p->last, all of the desired primes have been printed,
and sink can terminate. Before doing so, it waits for one more integer
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from its input channel, but reads zero bytes, which signals the upstream
threads that the computation is complete.

After sink accumulates n primes, it clones itself and becomes a fil-
ter, which requires a new channel:

〈spawn a new sink and call filter 431〉≡
{

p->c = Chan_new();
Thread_new(sink, p, sizeof *p, NULL);
filter(primes, input, p->c);
return EXIT_SUCCESS;

}

The new channel becomes the clone’s input channel and the filter’s
output channel. The sink’s input channel is the filter’s input channel.
When filter returns, its thread exits.

All of the switching between threads in sieve occurs in Chan_send
and Chan_receive, and there’s always at least one thread ready to run.
Thus, sieve works with either preemptive or nonpreemptive scheduling,
and it’s a simple example of using threads primarily for structuring an
application. Nonpreemptive threads are often called coroutines.

20.3 Implementations

The Chan implementation can be built entirely on top of the Sem imple-
mentation, so it’s machine-independent. Sem is machine-independent,
too, but it depends on the innards of the Thread implementation, so
Thread also implements Sem. A uniprocessor Thread implementation
can be made largely independent of both the host machine and its oper-
ating system. As detailed below, machine and operating-system depen-
dencies creep into the code for only context switching and preemption.

20.3.1 Synchronous Communication Channels

A Chan_T is a pointer to a structure that holds three semaphores, a
pointer to the message, and a byte count:

〈chan.c〉≡
#include <string.h>
#include "assert.h"
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#include "mem.h"
#include "chan.h"
#include "sem.h"

#define T Chan_T
struct T {

const void *ptr;
int *size;
Sem_T send, recv, sync;

};

〈chan functions 432〉

When a new channel is created, the ptr and size fields are undefined,
and the counters for the semaphores send, recv, and sync are initial-
ized to one, zero, and zero, respectively:

〈chan functions 432〉≡
T Chan_new(void) {

T c;

NEW(c);
Sem_init(&c->send, 1);
Sem_init(&c->recv, 0);
Sem_init(&c->sync, 0);
return c;

}

The send and recv semaphores control access to ptr and size, and the
sync semaphore ensures that the message transmission is synchronous
as specified by the Chan interface. A thread sends a message by filling in
the ptr and size fields, but only when it is safe to do so. send is one
when a sender can set ptr and size, and zero otherwise — for example,
before a receiver takes the messsage. Similarly, recv is one when ptr
and size hold valid pointers to a message and its size, and zero other-
wise — for example, before a sender has set ptr and size. send and
recv oscillate: send is one when recv is zero and vice versa. sync is one
when a receiver has successfully copied a message into its private buffer.

Chan_send sends a message by waiting on send, filling in ptr and
size, signalling recv, and waiting on sync:
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〈chan functions 432〉+≡
int Chan_send(Chan_T c, const void *ptr, int size) {

assert(c);
assert(ptr);
assert(size >= 0);
Sem_wait(&c->send);
c->ptr = ptr;
c->size = &size;
Sem_signal(&c->recv);
Sem_wait(&c->sync);
return size;

}

c->size holds a pointer to the byte count so that the receiver can mod-
ify that count, thereby notifying the sender of how many bytes were
transmitted. Chan_receive performs the three steps that complement
those done by Chan_send. Chan_receive receives a message by waiting
on recv, copying the message into its argument buffer and modifying
the byte count, and signalling sync then send:

〈chan functions 432〉+≡
int Chan_receive(Chan_T c, void *ptr, int size) {

int n;

assert(c);
assert(ptr);
assert(size >= 0);
Sem_wait(&c->recv);
n = *c->size;
if (size < n)

n = size;
*c->size = n;
if (n > 0)

memcpy(ptr, c->ptr, n);
Sem_signal(&c->sync);
Sem_signal(&c->send);
return n;

}

n is the number of bytes actually received, which might be zero. This
code handles all three cases: when the sender’s size exceeds the
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receiver’s size, when the two sizes are equal, and when the receiver’s
size exceeds the sender’s size.

20.3.2 Threads

The Thread implementation, thread.c, implements the Thread and Sem
interfaces:

〈thread.c〉≡
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include </usr/include/signal.h>
#include <sys/time.h>
#include "assert.h"
#include "mem.h"
#include "thread.h"
#include "sem.h"

void _MONITOR(void) {}
extern void _ENDMONITOR(void);

#define T Thread_T
〈macros 436〉
〈types 435〉
〈data 435〉
〈prototypes 439〉
〈static functions 436〉
〈thread functions 438〉
#undef T

#define T Sem_T
〈sem functions 457〉
#undef T

The vacuous function _MONITOR and the external function _ENDMONITOR
are used only for their addresses. As described below, these addresses
encompass critical sections — thread code that must not be interrupted.
A little of this code is written in assembly language, and _ENDMONITOR is
defined at the end of the assembly language file so that the critical sec-
tion includes this assembly code. Its name starts with an underscore
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because that’s the convention for implementation-defined assembly lan-
guage names used here.

A thread handle is an opaque pointer to a Thread_T structure, which
carries all of the information necessary to determine the state of the
thread. This structure is often called a thread control block.

〈types 435〉≡
struct T {

unsigned long *sp; /* must be first */
〈fields 435〉

};

The initial fields hold machine- and operating system–dependent values.
These fields appear first in Thread_T structures because they’re
accessed by assembly-language code. Placing them first makes these
fields easier to access, and new fields can be added without changing
existing assembly-language code. Only one field, sp, which holds the
thread’s stack pointer, is needed on most machines.

Most thread manipulations revolve around putting threads on queues
and removing them from queues. The Thread and Sem interfaces are
designed to maintain a simple invariant: A thread is on no queue or it is
on exactly one queue. This design makes it possible to avoid allocating
any space for queue entries. Instead of using, say, Seq_Ts to represent
queues, queues are represented by circularly linked lists of Thread_T
structures. The ready queue, which holds running threads that do not
have processors, is an example:

〈data 435〉≡
static T ready = NULL;

〈fields 435〉≡
T link;
T *inqueue;

Figure 20.3 shows three threads on the ready queue in the order A, B,
and C. ready points to the last thread in the queue, C, and the queue is
linked through the link fields. The inqueue field of each Thread_T
structure points to the queue variable — here, ready — and is used to
remove a thread from a queue. A queue is empty when the queue vari-
able is null, as suggested by ready’s initial value and tested by the macro
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〈macros 436〉≡
#define isempty(q) ((q) == NULL)

If a thread t is on a queue, then t->link and t->inqueue are nonnull;
otherwise both fields are null. The queue functions below use assertions
involving the link and inqueue fields to ensure that the invariant men-
tioned above holds. For example, put appends a thread to an empty or
nonempty queue:

〈static functions 436〉≡
static void put(T t, T *q) {

assert(t);
assert(t->inqueue == NULL && t->link == NULL);
if (*q) {

t->link = (*q)->link;
(*q)->link = t;

} else
t->link = t;

*q = t;
t->inqueue = q;

}

Figure 20.3 Three threads in the ready queue
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Thus, put(t, &ready) appends t to the ready queue. put takes the
address of the queue variable so that it can modify it: After calling
put(t, &q), q equals t and t->inqueue equals &q.

get removes the first element from a given queue:

〈static functions 436〉+≡
static T get(T *q) {

T t;

assert(!isempty(*q));
t = (*q)->link;
if (t == *q)

*q = NULL;
else

(*q)->link = t->link;
assert(t->inqueue == q);
t->link = NULL;
t->inqueue = NULL;
return t;

}

The code uses the inqueue field to ensure that the thread was indeed in
q, and it clears the link and inqueue fields to mark the thread as not
being in any queue.

The third and last queue function removes a queued thread from the
queue in which appears:

〈static functions 436〉+≡
static void delete(T t, T *q) {

T p;

assert(t->link && t->inqueue == q);
assert(!isempty(*q));
for (p = *q; p->link != t; p = p->link)

;
if (p == t)

*q = NULL;
else {

p->link = t->link;
if (*q == t)

*q = p;
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}
t->link = NULL;
t->inqueue = NULL;

}

The first assertion ensures that t is in q, and the second ensures that the
queue is nonempty, which it must be since t is in it. The if statement
handles the case in which t is the only thread on q.

Thread_init creates the “root” thread (the Thread_T structure for
the root thread is allocated statically):

〈thread functions 438〉≡
int Thread_init(int preempt, ...) {

assert(preempt == 0 || preempt == 1);
assert(current == NULL);
root.handle = &root;
current = &root;
nthreads = 1;
if (preempt) {

〈initialize preemptive scheduling 454〉
}
return 1;

}

〈data 435〉+≡
static T current;
static int nthreads;
static struct Thread_T root;

〈fields 435〉+≡
T handle;

current is the thread that currently holds the processor, and nthreads
is the number of existing threads. Thread_new increments nthreads
and Thread_exit decrements it. The handle field simply points to the
thread handle and helps check the validity of handles: t identifies an
existing thread only if t is equal to t->handle.

If current is null, Thread_init has not been called, so testing for a
null current, as shown above, implements the checked runtime error
that Thread_init must be called only once. Checking for a nonnull cur-
rent in the other Thread and Sem functions implements the checked
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runtime error that Thread_init must be called before any other
Thread, Sem, or Chan function. An example is Thread_self, which sim-
ply returns current:

〈thread functions 438〉+≡
T Thread_self(void) {

assert(current);
return current;

}

Switching between threads requires some machine-dependent code,
because each thread has its own stack and exception state, for example.
There are numerous possible designs for the context-switch primitives,
all of which are relatively simple because they’re written in whole or in
part in assembly language. The Thread implementation uses the single,
implementation-specific primitive,

〈prototypes 439〉≡
extern void _swtch(T from, T to);

which switches contexts from thread from to thread to, where from and
to are pointers to Thread_T structures. _swtch is like setjmp and
longjmp: When thread A calls _swtch, control transfers to, say, thread B.
When B calls _swtch to resume A, A’s call to _swtch returns. Thus, A
and B treat _swtch as just another function call. This simple design also
takes advantage of the machine’s calling sequence, which, for example,
helps save A’s state when it switches to B. The only disadvantage is that
a new thread must be created with a state that looks as if the thread
called _swtch, because the first time it runs will be as a result of a return
from _swtch.

_swtch is called in only one place, the static function run:

〈static functions 436〉+≡
static void run(void) {

T t = current;

current = get(&ready);
t->estack = Except_stack;
Except_stack = current->estack;
_swtch(t, current);

}
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〈fields 435〉+≡
Except_Frame *estack;

run switches from the currently executing thread to the thread at the
head of the ready queue. It dequeues the leading thread from ready, sets
current, and switches to the new thread. The estack field holds the
pointer to the exception frame at the top of a thread’s exception stack,
and run takes care of updating Except’s global Except_stack, which is
described on page 53.

All of the Thread and Sem functions that can cause a context switch
call run, and they put the current thread on ready or another appropri-
ate queue before calling run. Thread_pause is the simplest example: It
puts current on ready and calls run.

〈thread functions 438〉+≡
void Thread_pause(void) {

assert(current);
put(current, &ready);
run();

}

If there’s only one running thread, Thread_pause puts it on ready and
run removes it and switches to it. Thus, _swtch(t, t) must work prop-
erly. Figure 20.4 depicts the context switches between threads A, B, and
C that execute the following calls, assuming that A holds the processor
initially and ready holds B and C in that order.

The vertical solid arrows in Figure 20.4 show when each thread has the
processor, and the horizontal dashed arrows are the context switches;
the ready queue is shown in brackets beside the solid arrows. The
Thread function and the call to _swtch it causes appear under each con-
text switch.

When A calls Thread_pause, it’s added to ready, and B is removed
and gets the processor. While B is running, ready holds C A. When B
calls Thread_pause, C is removed from ready and gets the processor,

A B C

Thread_pause() Thread_pause() Thread_pause()

Thread_join(C) Thread_exit(0) Thread_exit(0)

Thread_exit(0)
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and ready holds A B. After C calls Thread_pause, ready again holds B C
while A is executing. When A calls Thread_join(C), it blocks on C ’s ter-
mination, so the processor is given to B, the leading thread in ready.

At this point, ready holds only C, because A is in a queue associated
with C. When B calls Thread_exit, run switches to C and ready
becomes empty. C terminates by calling Thread_exit, which causes A to
be put back in ready as a result of C’s termination. Thus, when
Thread_exit calls run, A gets the processor. A’s call to Thread_exit
does not cause a context switch, however: A is the only thread in the sys-
tem, so Thread_exit calls exit.

Deadlock occurs when ready is empty and run is called; that is, there
are no running threads. Deadlock is a checked runtime error, and it’s
detected in get when it’s called with an empty ready queue.

Figure 20.4 Context-switching between three threads
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Thread_join and Thread_exit illustrate the queue manipulations
involving “join queues” and the ready queue. There are two flavors of
Thread_join: Thread_join(t) waits for thread t to terminate and
returns t’s exit code — the value t passed to Thread_exit; t must not
be the calling thread. Thread_join(NULL) waits for all threads to termi-
nate and returns zero; only one thread can call Thread_join(NULL).

〈thread functions 438〉+≡
int Thread_join(T t) {

assert(current && t != current);
testalert();
if (t) {

〈wait for thread t to terminate 442〉
} else {

〈wait for all threads to terminate 443〉
return 0;

}
}

As described below, testalert raises Thread_Alerted if the calling
thread has been alerted. When t is nonnull and refers to an existing
thread, the calling thread puts itself on t’s join queue to wait for its
demise; otherwise, Thread_join returns −1 immediately.

〈wait for thread t to terminate 442〉≡
if (t->handle == t) {

put(current, &t->join);
run();
testalert();
return current->code;

} else
return -1;

〈fields 435〉+≡
int code;
T join;

t is an existing thread only if t->handle is equal to t. As shown below,
Thread_exit clears the handle field when a thread terminates. When t
terminates, Thread_exit stores its argument in the code field of each of
the Thread_Ts in t->join as it moves those threads to the ready queue.
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Thus, when those threads execute again, that exit code is readily avail-
able, and it is returned by Thread_join in each resumed thread.

When t is null, the calling thread is put on join0, which holds the one
and only thread waiting for all others to terminate:

〈wait for all threads to terminate 443〉≡
assert(isempty(join0));
if (nthreads > 1) {

put(current, &join0);
run();
testalert();

}

〈data 435〉+≡
static T join0;

The next time the calling thread runs, it will be the only existing thread.
This code also handles the case when the calling thread is the only
thread in the system, which occurs when nthreads is equal to one.

Thread_exit has numerous jobs to do: It must deallocate the
resources associated with the calling thread, resume the threads waiting
for the calling thread to terminate and arrange for them to get the exit
code, and check whether the calling thread is the second to last or last
thread in the system.

〈thread functions 438〉+≡
void Thread_exit(int code) {

assert(current);
release();
if (current != &root) {

current->next = freelist;
freelist = current;

}
current->handle = NULL;
〈resume threads waiting for current’s termination 444〉
〈run another thread or exit 444〉

}

〈fields 435〉+≡
T next;
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〈data 435〉+≡
static T freelist;

The call to release and the code that appends current to freelist
collaborate to deallocate the calling thread’s resources, as detailed be-
low. If the calling thread is the root thread, its storage must not be deal-
located, because that storage is allocated statically.

Clearing the handle field marks the thread as nonexistent, and those
threads waiting for its demise can now be resumed:

〈resume threads waiting for current’s termination 444〉≡
while (!isempty(current->join)) {

T t = get(&current->join);
t->code = code;
put(t, &ready);

}

The calling thread’s exit code is copied to the code field in the Thread_T
structures of the waiting threads so that current can be deallocated.

If only two threads exist and one of them is in join0, that waiting
thread can now be resumed.

〈resume threads waiting for current’s termination 444〉+≡
if (!isempty(join0) && nthreads == 2) {

assert(isempty(ready));
put(get(&join0), &ready);

}

The assertion helps detect errors in maintaining nthreads and ready: If
join0 is nonempty and nthreads is two, ready must be empty, because
one of the two existing threads is in join0 and the other one is executing
Thread_exit.

Thread_exit concludes by decrementing nthreads and either calling
the library function exit or running another thread:

〈run another thread or exit 444〉≡
if (--nthreads == 0)

exit(code);
else

run();
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Thread_alert marks a thread as “alerted” by setting a flag in its
Thread_T structure and removing it from the queue, if it’s in one.

〈thread functions 438〉+≡
void Thread_alert(T t) {

assert(current);
assert(t && t->handle == t);
t->alerted = 1;
if (t->inqueue) {

delete(t, t->inqueue);
put(t, &ready);

}
}

〈fields 435〉+≡
int alerted;

Thread_alert itself cannot raise Thread_Alerted, because the calling
thread has a different state than t. Threads must raise Thread_Alerted
and deal with it themselves, which is the purpose of testalert:

〈static functions 436〉+≡
static void testalert(void) {

if (current->alerted) {
current->alerted = 0;
RAISE(Thread_Alerted);

}
}

〈data 435〉+≡
const Except_T Thread_Alerted = { "Thread alerted" };

testalert is called whenever a thread is about to block, or when it is
resumed after being blocked. The former case is illustrated by the call to
testalert at the beginning of Thread_join on page 442. The latter
case always occurs after a call to run, and it’s illustrated by the calls to
testalert in the chunks 〈wait for thread t to terminate 442〉 and 〈wait
for all threads to terminate 443〉. Similar usage appears in Sem_wait and
Sem_signal; see page 458.
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20.3.3 Thread Creation and Context-Switching

The last Thread function is Thread_new. Some of Thread_new is
machine-dependent, because it interacts with _swtch, but most of it is
nearly machine-independent. Thread_new has four tasks: allocate the
resources for a new thread, initialize the new thread’s state so that it can
be started by a return from _swtch, increment nthreads, and append
the new thread to ready.

〈thread functions 438〉+≡
T Thread_new(int apply(void *), void *args,

int nbytes, ...) {
 T t;

assert(current);
assert(apply);
assert(args && nbytes >= 0 || args == NULL);
if (args == NULL)

nbytes = 0;
〈allocate resources for a new thread 446〉
t->handle = t;
〈initialize t’s state 449〉
nthreads++;
put(t, &ready);
return t;

}

In this uniprocessor implementation of Thread, the only resources a
thread needs are the Thread_T structure and a stack. The Thread_T
structure and a 16K byte stack are allocated with a single call to Mem’s
ALLOC:

〈allocate resources for a new thread 446〉≡
{

int stacksize = (16*1024+sizeof (*t)+nbytes+15)&~15;
release();
〈begin critical region 447〉
TRY

t = ALLOC(stacksize);
memset(t, '\0', sizeof *t);

EXCEPT(Mem_Failed)
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t = NULL;
END_TRY;
〈end critical region 447〉
if (t == NULL)

RAISE(Thread_Failed);
〈initialize t’s stack pointer 448〉

}

〈data 435〉+≡
const Except_T Thread_Failed =

{ "Thread creation failed" };

This code is complex because it must maintain several invariants, the
most important of which is that a call to a Thread function must not be
interrupted. Two mechanisms collaborate to maintain this invariant: one
deals with interrupts that occur when control is in a Thread function,
and is described below. The other mechanism handles interrupts when
control is in a routine that is called by a Thread function, which is illus-
trated by the calls to ALLOC and memset. These kinds of calls are brack-
eted by chunks that identify critical regions by incrementing and
decrementing the value of critical:

〈begin critical region 447〉≡
do { critical++;

〈end critical region 447〉≡
critical--; } while (0);

〈data 435〉+≡
static int critical;

As shown on page 455, interrupts that occur when critical is nonzero
are ignored.

Thread_new must catch Mem_Failed itself, and raise its exception,
Thread_failed, after it has completed the critical section. If it didn’t
catch the exception, control would pass to the caller’s exception handler,
with critical set to a positive value that would never be decremented.

Thread_new assumes that stacks grow toward lower addresses, and it
initializes the sp field as depicted in Figure 20.5; the shaded box at the
top is the Thread_T structure, and the ones at the bottom are the copy
of args and the initial frames, as described below.
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〈initialize t’s stack pointer 448〉≡
t->sp = (void *)((char *)t + stacksize);
while (((unsigned long)t->sp)&15)

t->sp--;

As suggested by the assignment to stacksize and by this chunk,
Thread_new initializes the stack pointer so that it’s aligned on a 16-byte
boundary, which accommodates most platforms. Most machines require
either a four-byte or eight-byte stack alignment, but the DEC ALPHA
requires a 16-byte alignment.

Thread_new starts by calling release, which Thread_exit also calls.
Thread_exit can’t deallocate the current thread’s stack because it’s
using it. So it adds the thread handle to freelist, and delays the deallo-
cation until the next call to release:

〈static functions 436〉+≡
static void release(void) {

T t;

Figure 20.5 Allocation of a Thread_T structure and a stack

sp
t

args
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〈begin critical region 447〉
while ((t = freelist) != NULL) {

freelist = t->next;
FREE(t);

}
〈end critical region 447〉

}

release is more general than necessary: freelist has only one ele-
ment, because release is called by both Thread_exit and Thread_new.
If only Thread_new had called release, dead Thread_Ts could accumu-
late on freelist. release uses a critical section because it calls Mem’s
FREE.

Next, Thread_new initializes the new thread’s stack so that it holds a
copy of the nbytes bytes starting at args, and the frames needed to
make it appear as if the thread had called _swtch. This latter initializa-
tion is machine-dependent:

〈initialize t’s state 449〉≡
if (nbytes > 0) {

t->sp -= ((nbytes + 15U)&~15)/sizeof (*t->sp);
〈begin critical region 447〉
memcpy(t->sp, args, nbytes);
〈end critical region 447〉
args = t->sp;

}
#if alpha
{ 〈initialize an ALPHA stack 463〉 }
#elif mips
{ 〈initialize a MIPS stack 461〉 }
#elif sparc
{ 〈initialize a SPARC stack 452〉 }
#else
Unsupported platform
#endif

The bottom of the stack shown in Figure 20.5 depicts the result of these
initializations: The darker shading identifies the machine-dependent
frames and the lighter shading is the copy of args. thread.c and
swtch.s are the only modules in this book that use conditional
compilation.
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The stack initialization is easier to understand after digesting an
assembly-language implementation of _swtch:

〈swtch.s〉≡
#if alpha
〈ALPHA swtch 462〉
〈ALPHA startup 463〉
#elif sparc
〈SPARC swtch 450〉
〈SPARC startup 452〉
#elif mips
〈MIPS swtch 460〉
〈MIPS startup 461〉
#else
Unsupported platform
#endif

_swtch(from, to) must save from’s state, restore to’s state, and con-
tinue executing to by returning from to’s most recent call to _swtch.
Calling conventions save much of the state, because they usually dictate
that the values of some registers must be saved across calls, and that
some machine-state information, such as condition codes, is not saved.
So _swtch saves only the state it needs that is not preserved by the call-
ing conventions — the return address, for example — and it can save
these values on the calling thread’s stack.

The SPARC _swtch is perhaps the easiest one because the SPARC call-
ing convention saves all of the registers by giving each function its own
“register window”; the only registers it must preserve are the frame
pointer and the return address.

〈SPARC swtch 450〉≡
.global __swtch
.align 4
.proc 4

1 __swtch:save %sp,-(8+64),%sp
2 st %fp,[%sp+64+0] ! save from’s frame pointer

3 st %i7,[%sp+64+4] ! save from’s return address

4 ta 3 ! flush from’s registers

5 st %sp,[%i0] ! save from’s stack pointer

6 ld [%i1],%sp ! load to’s stack pointer

7 ld [%sp+64+0],%fp ! restore to’s frame pointer
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8 ld [%sp+64+4],%i7 ! restore to’s return address

9 ret ! continue execution of to

10 restore

The line numbers above identify the nonboilerplate lines for the explana-
tion below, and they are not part of the assembly-language code. By con-
vention, assembly-language names are prefixed with an underscore, so
_swtch is known as __swtch in assembly language on the SPARC.

Figure 20.6 shows the layout of a frame for _swtch; all SPARC frames
have at least 64 bytes at the top of the frame into which the operating
system stores the function’s register window, when necessary. The other
two words in _swtch’s 72-byte frame hold the saved frame pointer and
the return address.

Line 1 in _swtch allocates a stack frame for _swtch. Lines 2 and 3
save from’s frame pointer (%fp) and return address (%i7) at the seven-
teenth and eighteenth 32-bit words in the new frame (at offsets 64 and
68). Line 4 makes a system call to “flush” from’s register windows to the
stack, which is necessary in order to continue execution with to’s regis-
ter windows. This call is unfortunate: one of the presumed advantages of
user-level threads is that context-switching does not require kernel inter-
vention. On the SPARC, however, only the kernel can flush the register
windows.

Line 5 saves from’s stack pointer in the sp field of its Thread_T struc-
ture. This instruction shows why that field is first: This code is indepen-
dent of the size of a Thread_T and the locations of the other fields. Line
6 is italicized because it is the actual context switch. This instruction
loads to’s stack pointer into %sp, the stack pointer register. Henceforth,
_swtch is executing on to’s stack. Lines 7 and 8 restore to’s frame

Figure 20.6 Layout of a stack frame for _swtch
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pointer and return address, because %sp now points at the top of to’s
stack. Lines 9 and 10 comprise the normal function return sequence, and
control continues at the address saved the last time to called _swtch.

Thread_new must create a frame for _swtch so that some other call to
_swtch can return properly and start execution of the new thread, and
this execution must call apply. Figure 20.7 shows what Thread_new
builds: The frame for _swtch is on the top of the stack, and the frame
under it is for the following startup code.

〈SPARC startup 452〉≡
.global __start
.align 4
.proc 4

1 __start:ld [%sp+64+4],%o0
2 ld [%sp+64],%o1
3 call %o1; nop
4 call _Thread_exit; nop
5 unimp 0

.global __ENDMONITOR
__ENDMONITOR:

The return address in the _swtch frame points to _start, and the
startup frame holds apply and args, as shown in Figure 20.7. On the
first return from _swtch, control lands at _start (which is __start in
the assembly code). Line 1 in the startup code loads args into %o0,
which, following the SPARC calling conventions, is used to pass the first
argument. Line 2 loads the address of apply into %o1, which is otherwise
unused, and line 3 makes an indirect call to apply. If apply returns, its
exit code will be in %o0, and thus that value will be passed to
Thread_exit, which never returns. Line 5 should never be executed, and
will cause a fault if it is. _ENDMONITOR is explained below.

The 15 lines of assembly language in _swtch and _start are all that’s
necessary on the SPARC; initializing the stack for a new thread as shown
in Figure 20.7 can be done entirely in C. The two frames are built bottom-
up, as follows.

〈initialize a SPARC stack 452〉≡
1 int i; void *fp; extern void _start(void);
2 for (i = 0; i < 8; i++)
3 *--t->sp = 0;
4 *--t->sp = (unsigned long)args;
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5 *--t->sp = (unsigned long)apply;
6 t->sp -= 64/4;
7 fp = t->sp;
8 *--t->sp = (unsigned long)_start - 8;
9 *--t->sp = (unsigned long)fp;
10 t->sp -= 64/4;

Lines 2 and 3 create the eight words at the bottom of the startup frame.
Lines 4 and 5 push the value of args and apply onto the stack, and line
6 allocates the 64 bytes at the top of the startup frame. The stack pointer
at this point is the frame pointer that must be restored by _swtch, so
line 7 saves this value in fp. Line 8 pushes the return address — the
saved value of %i7. The return address is eight bytes before _start
because the SPARC ret instruction adds eight to the address in %i7

Figure 20.7 Startup and initial _swtch frames on the SPARC
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when it returns. Line 9 pushes the saved value of %fp, and line 10 con-
cludes with the 64 bytes at the top of the _swtch frame.

If apply is a function that takes a variable number of arguments, its
entry sequence stores the values in %o0 through %o5 into the stack at off-
sets 64 through 88 in its caller’s frame, that is, in the startup frame.
Lines 2 and 3 allocate this space and an additional eight bytes so that the
stack pointer remains aligned on an eight-byte boundary, as dictated by
the SPARC hardware.

The MIPS and ALPHA versions of _swtch and _start appear in Sec-
tion 20.3.6.

20.3.4 Preemption

Preemption is equivalent to periodic, implicit calls to Thread_pause. The
UNIX-dependent implementation of preemption in Thread arranges for a
“virtual” timer interrupt every 50 milliseconds, and the interrupt handler
executes code equivalent to Thread_pause. The timer is virtual, because
it ticks only while the process is executing. Thread_init uses the UNIX

signal facility to initialize timer interrupts. The first step associates the
interrupt handler with the virtual timer signal, SIGVTALRM:

〈initialize preemptive scheduling 454〉≡
{

struct sigaction sa;
memset(&sa, '\0', sizeof sa);
sa.sa_handler = (void (*)())interrupt;
if (sigaction(SIGVTALRM, &sa, NULL) < 0)

return 0;
}

A sigaction structure has three fields: sa_handler is the address of
the function that’s to be called when the SIGVTALRM signal occurs,
sa_mask is a signal set that specifies other signals that should be
blocked while an interrupt is being handled in addition to SIGVTALRM,
and sa_flags provides signal-specific options. Thread_init sets
sa_handler to interrupt, described below, and clears the other fields.

The sigaction function is the POSIX standard function for associat-
ing handlers with signals. The POSIX standard is supported by most UNIX

variants and by some other operating systems, such as Windows NT. The
three arguments give the symbolic name for the signal number, a pointer
to the sigaction structure that modifies the action of that signal, and a
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pointer to another sigaction structure that’s filled in with the previous
action for the signal. When the third argument is null, information about
the previous action is not returned.

The sigaction function returns zero when the signal’s action has
been modified as specified by the second argument; it returns −1 other-
wise. Thread_init returns zero when sigaction returns −1, to indicate
that the thread system cannot support preemptive scheduling.

Once the signal handler is in place, the virtual timer is initialized:

〈initialize preemptive scheduling 454〉+≡
{

struct itimerval it;
it.it_value.tv_sec     =  0;
it.it_value.tv_usec    = 50;
it.it_interval.tv_sec  =  0;
it.it_interval.tv_usec = 50;
if (setitimer(ITIMER_VIRTUAL, &it, NULL) < 0)

return 0;
}

The it_value field in an itimerval structure specifies the amount of
time in seconds (tv_sec) and milliseconds (tv_msec) to the next timer
interrupt. The values in the it_interval field are used to reset the
it_value field when the timer expires. Thread_init arranges for the
timer interrupt to occur every 50 milliseconds.

The setitimer function is much like the sigaction function: Its first
argument specifies which timer’s action is to be affected (there’s also a
timer for real time), the second argument is a pointer to the itimerval
structure that holds the new timer values, and the third argument is a
pointer to the itimerval structure that gets the previous timer values,
or null if the previous values are not needed. setitimer returns zero
when the timer is set successfully, and returns −1 otherwise.

The signal handler, interrupt, is called when the virtual timer
expires. When the interrupt is dismissed, which occurs when interrupt
returns, the timer begins anew. interrupt executes the equivalent of
Thread_pause, unless the current thread is in a critical region or is
somewhere in a Thread or Sem function.

〈static functions 436〉+≡
static int interrupt(int sig, int code,

struct sigcontext *scp) {
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if (critical ||
   scp->sc_pc >= (unsigned long)_MONITOR
&& scp->sc_pc <= (unsigned long)_ENDMONITOR)

return 0;
put(current, &ready);
sigsetmask(scp->sc_mask);
run();
return 0;

}

The sig argument carries the signal number, and code supplies addi-
tional data for some signals. The scp argument is a pointer to a sigcon-
text structure that, among other values, contains the location counter at
the time of the interrupt in the sc_pc field. thread.c begins with the
vacuous function _MONITOR, and the assembly-language code in swtch.s
ends with a definition for the global symbol _ENDMONITOR. If the object
files are loaded into the program so that the object code for swtch.s fol-
lows the object code for thread.c, then the interrupted thread is execut-
ing a Thread or Sem function if its location counter is between _MONITOR
and _ENDMONITOR. Thus, if critical is nonzero, or scp->sc_pc is
between _MONITOR and _ENDMONITOR, interrupt returns and thus
ignores this timer interrupt. Otherwise, interrupt puts the current thread
on ready and runs another one.

The call to sigsetmask restores the signals disabled by the interrupt,
which are given in the signal set scp->sc_mask; this set usually holds
the SIGVTALRM signal only. This call is necessary because the next thread
to run may not have been suspended by an interrupt. Suppose, for exam-
ple, that thread A calls Thread_pause explicitly, and execution contin-
ues with thread B. When a timer interrupt occurs, control lands in
interrupt with SIGVTALRM signals disabled. B reenables SIGVTALRM,
and gives up the processor to A.

If the call to sigsetmask is omitted, A would be resumed with
SIGVTALRM disabled, because A was suspended by Thread_pause, not by
interrupt. When the next timer interrupt occurs, A is suspended and B
continues.  In this case, calling sigsetmask is redundant, because B dis-
misses the interrupt, which restores the signal mask. A flag in the
Thread_T structure could be used to avoid the unnecessary calls to sig-
setmask.

The second and succeeding arguments to interrupt handlers are
system-dependent. Most UNIX variants support the code and scp argu-
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ments shown above, but other POSIX-compliant systems may supply dif-
ferent arguments to handlers.

20.3.5 General Semaphores

Creating and initializing semaphores are the easy two of the four Sem
functions:

〈sem functions 457〉≡
T *Sem_new(int count) {

T *s;

NEW(s);
Sem_init(s, count);
return s;

}

void Sem_init(T *s, int count) {
assert(current);
assert(s);
s->count = count;
s->queue = NULL;

}

Sem_wait and Sem_signal are short, but it is tricky to write imple-
mentations that are both correct and fair. The semaphore operations are
semantically equivalent to:

Sem_wait(s): while (s->count <= 0)
;

--s->count;

Sem_signal(s): ++s->count;

These semantics lead to the concise and correct, but unfair, implemen-
tations shown below; these implementations also ignore alerts and
checked runtime errors.

void Sem_wait(T *s) {
while (s->count <= 0) {

put(current, &s->queue);
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run();
}
--s->count;

}

void Sem_signal(T *s) {
if (++s->count > 0 && !isempty(s->queue))

put(get(&s->queue), &ready);
}

These implementations are unfair because they permit “starvation.”
Assume s is initialized to one and threads A and B both execute

for (;;) {
Sem_wait(s);
…
Sem_signal(s);

}

Suppose A is in the critical region denoted by the ellipsis, and B is in
s->queue. When A calls Sem_signal, B is moved to the ready queue. If B
executes next, its call to Sem_wait will return and B will enter the critical
region. But A might call Sem_wait first and grab the critical region. If A
is preempted inside the region, B resumes but finds that s->count is
zero, and is moved back onto s->queue. Without some intervention, B
could cycle between ready and s->queue indefinitely, and more threads
competing for s make starvation more likely.

One solution is to ensure that when a thread is moved from s->queue
to ready, it’s guaranteed to get the semaphore. This scheme can be
implemented by moving a thread from s->queue to ready when
s->count is about to be incremented from zero to one, but not actually
incrementing it. Similarly, s->count isn’t decremented when a blocked
thread is resumed inside of Sem_wait.

〈sem functions 457〉+≡
void Sem_wait(T *s) {

assert(current);
assert(s);
testalert();
if (s->count <= 0) {

put(current, (Thread_T *)&s->queue);
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run();
testalert();

} else
--s->count;

}

void Sem_signal(T *s) {
assert(current);
assert(s);
if (s->count == 0 && !isempty(s->queue)) {

Thread_T t = get((Thread_T *)&s->queue);
assert(!t->alerted);
put(t, &ready);

} else
++s->count;

}

When s->count is zero and thread C is moved to the ready queue, C is
guaranteed to get the semaphore, because other threads that call
Sem_wait block since s->count is zero. For general semaphores, how-
ever, C may not get the semaphore first: If D calls Sem_signal before C
runs again, that opens the door for another thread to get the semaphore
before C, though C will get it too.

Alerts make Sem_wait hard to understand. If a thread blocked on s is
alerted, its call to run in Sem_wait returns with its alerted flag set. In
this case, the thread was moved to ready by Thread_Alert, not by
Sem_signal, so its resumption is unrelated to the value of s->count.
The thread must leave s undisturbed, clear its alerted flag, and raise
Thread_Alerted.

20.3.6 Context-Switching on the MIPS and ALPHA

The MIPS and ALPHA versions of _swtch and _start are similar in
design to the SPARC versions but the details are different.

The MIPS version of _swtch appears below. The frame size is 88 bytes.
The store instructions through the sw $31,48+36($sp) save the “caller-
saved” floating-point and integer registers; register 31 holds the return
address. The italicized instruction switches contexts by loading to’s
stack pointer, and the load instructions that follow restore to’s caller-
saved registers.
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〈MIPS swtch 460〉≡
.text
.globl _swtch
.align 2
.ent _swtch
.set reorder
_swtch: .frame  $sp,88,$31

subu $sp,88
.fmask 0xfff00000,-48
s.d $f20,0($sp)
s.d $f22,8($sp)
s.d $f24,16($sp)
s.d $f26,24($sp)
s.d $f28,32($sp)
s.d $f30,40($sp)
.mask 0xc0ff0000,-4
sw $16,48+0($sp)
sw $17,48+4($sp)
sw $18,48+8($sp)
sw $19,48+12($sp)
sw $20,48+16($sp)
sw $21,48+20($sp)
sw $22,48+24($sp)
sw $23,48+28($sp)
sw $30,48+32($sp)
sw $31,48+36($sp)
sw $sp,0($4)
lw $sp,0($5)
l.d $f20,0($sp)
l.d $f22,8($sp)
l.d $f24,16($sp)
l.d $f26,24($sp)
l.d $f28,32($sp)
l.d $f30,40($sp)
lw $16,48+0($sp)
lw $17,48+4($sp)
lw $18,48+8($sp)
lw $19,48+12($sp)
lw $20,48+16($sp)
lw $21,48+20($sp)
lw $22,48+24($sp)
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lw $23,48+28($sp)
lw $30,48+32($sp)
lw $31,48+36($sp)
addu $sp,88
j $31

Here’s the MIPS startup code:

〈MIPS startup 461〉≡
.globl _start
_start: move $4,$23 # register 23 holds args

move $25,$30 # register 30 holds apply
jal $25
move $4,$2 # Thread_exit(apply(p))
move $25,$21 # register 21 holds Thread_exit
jal $25
syscall

.end _swtch

.globl _ENDMONITOR
_ENDMONITOR:

This code collaborates with the MIPS-dependent portion of Thread_new,
which arranges for Thread_exit, args, and apply to appear in registers
21, 23, and 30, respectively, by storing them in the right places in the
frame. apply’s first argument is passed in register 4, and returns its
result in register 2. The startup code doesn’t need a frame, so
Thread_new builds only a _swtch frame, but it does allocate four words
on the stack under that frame in case apply takes a variable number of
arguments.

〈initialize a MIPS stack 461〉≡
extern void _start(void);
t->sp -= 16/4;
t->sp -= 88/4;
t->sp[(48+20)/4] = (unsigned long)Thread_exit;
t->sp[(48+28)/4] = (unsigned long)args;
t->sp[(48+32)/4] = (unsigned long)apply;
t->sp[(48+36)/4] = (unsigned long)_start;

The address of Thread_exit is passed in register 21 because the MIPS
startup code must be position-independent. The startup code copies the
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address of args to register 4 and the addresses of apply and
Thread_exit to register 25 before the calls (the jal instructions)
because that’s what is demanded by the MIPS position-independent call-
ing sequence.

The ALPHA chunks are similar to the corresponding MIPS chunks.

〈ALPHA swtch 462〉≡
.globl _swtch
.ent _swtch
_swtch: lda $sp,-112($sp) # allocate _swtch's frame

.frame $sp,112,$26

.fmask 0x3f0000,-112
stt $f21,0($sp) # save from’s registers
stt $f20,8($sp)
stt $f19,16($sp)
stt $f18,24($sp)
stt $f17,32($sp)
stt $f16,40($sp)
.mask 0x400fe00,-64
stq $26,48+0($sp)
stq $15,48+8($sp)
stq $14,48+16($sp)
stq $13,48+24($sp)
stq $12,48+32($sp)
stq $11,48+40($sp)
stq $10,48+48($sp)
stq $9,48+56($sp)
.prologue 0
stq $sp,0($16) # save from’s stack pointer
ldq $sp,0($17) # restore to’s stack pointer
ldt $f21,0($sp) # restore to’s registers
ldt $f20,8($sp)
ldt $f19,16($sp)
ldt $f18,24($sp)
ldt $f17,32($sp)
ldt $f16,40($sp)
ldq $26,48+0($sp)
ldq $15,48+8($sp)
ldq $14,48+16($sp)
ldq $13,48+24($sp)
ldq $12,48+32($sp)
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ldq $11,48+40($sp)
ldq $10,48+48($sp)
ldq $9,48+56($sp)
lda $sp,112($sp) # deallocate frame
ret $31,($26)

.end _swtch

〈ALPHA startup 463〉≡
.globl _start
.ent _start
_start: .frame $sp,0,$26

.mask 0x0,0

.prologue 0
mov $14,$16 # register 14 holds args
mov $15,$27 # register 15 holds apply
jsr $26,($27) # call apply
ldgp $26,0($26) # reload the global pointer
mov $0,$16 # Thread_exit(apply(args))
mov $13,$27 # register 13 has Thread_exit
jsr $26,($27)
call_pal0

.end _start

.globl _ENDMONITOR
_ENDMONITOR:

〈initialize an ALPHA stack 463〉≡
extern void _start(void);
t->sp -= 112/8;
t->sp[(48+24)/8] = (unsigned long)Thread_exit;
t->sp[(48+16)/8] = (unsigned long)args;
t->sp[(48+ 8)/8] = (unsigned long)apply;
t->sp[(48+ 0)/8] = (unsigned long)_start;

Further Reading

Andrews (1991) is a comprehensive text about concurrent programming.
It describes most of the problems specific to programming concurrent
systems and their solutions, including synchronization mechanisms,
message-passing systems, and remote procedure calls. It also describes
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features designed specifically for concurrent programming in four pro-
gramming languages.

Thread is based on Modula-3’s thread interface, which is derived from
experience with the Modula-2+ thread facilities at Digital’s System
Research Center (SRC). Chapter 4 in Nelson (1991), by Andrew Birrell, is a
guide to programming with threads; anyone who writes thread-based
applications will benefit from this article. The thread facilities in most
modern operating systems are based in some way on the SRC interfaces.

Tanenbaum (1995) surveys the design issues for user-level and kernel-
level threads and outlines their implementations. His case studies
describe the thread packages in three operating systems (Amoeba, Cho-
rus, and Mach), and threads in the Open Software Foundation’s Distrib-
uted Computing Environment. Originally, DCE, as this environment is
known, ran on the OSF/1 variant of UNIX, but it is now available for most
operating systems, including OpenVMS, OS/2, Windows NT, and Win-
dows 95.

POSIX threads (Institute for Electrical and Electronic Engineers 1995)
and Solaris 2 threads are described in detail by Kleiman, Shah, and
Smaalders (1996). This practically oriented book includes a chapter on
the interaction of threads and libraries, numerous examples using
threads to parallelize algorithms, including sorting, and thread-safe
implementations for lists, queues, and hash tables.

sieve is adapted from a similar example that McIlroy (1968) used to
illustrate programming with coroutines, which are like nonpreemptive
threads. Coroutines appear in several languages, sometimes under dif-
ferent names. Icon’s coexpressions are an example (Wampler and Gris-
wold 1983). Marlin (1980) surveys many of the original coroutine
proposals and describes model implementations in Pascal variants.

Channels are based on CSP — communicating sequential processes
(Hoare 1978). Threads and channels also appear in Newsqueak, an appli-
cative concurrent language. Channels in CSP and Newsqueak are more
powerful than those provided by Chan, because both languages have
facilities to wait nondeterministically on more than one channel. Pike
(1990) tours the highlights of the implementation of an interpreter for
Newsqueak, and describes using random numbers to vary the preemp-
tion frequency, which makes thread scheduling nondeterministic (but
fair). McIlroy (1990) details a Newsqueak program that manipulates
power series by treating them as data streams; his approach is similar in
spirit to sieve.

Newsqueak has been used to implement window systems, which
exemplify the kinds of interactive applications that benefit the most
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from threads. The NeWS window system (Gosling, Rosenthal, and Arden
1989) is another example of a window system written in a language with
threads. The heart of the NeWS system is a PostScript interpreter, which
renders text and images. Most of the NeWS window system itself is writ-
ten in its variant of PostScript, which includes extensions for nonpre-
emptive threads.

The functional language Concurrent ML (Reppy 1997) supports
threads and synchronous channels much like those provided by Chan. It
is often easier to implement threads in nonimperative languages than in
stack-based, imperative languages. In Standard ML, for example, there’s
no stack, because activations can outlive their callers, so no special
arrangements are needed to support threads. As a result, Concurrent ML
is implemented entirely in Standard ML.

Using _MONITOR and _ENDMONITOR functions to delimit the code in the
Thread and Sem implementation is from Cormack (1988), which
describes a similar but slightly different interface for UNIX threads. Chap-
ter 10 in Stevens (1992) is a comprehensive treatment of signals and sig-
nal-handling procedures; it describes the differences among the UNIX

variants and the POSIX standard.

Exercises

20.1 Binary semaphores — usually called locks or mutexes — are the
most prevalent type of semaphore. Design a separate interface for
locks whose implementation is simpler than the one for general
semaphores. Be careful about alerts.

20.2 Suppose thread A locks x and then attempts to lock y, and B locks
y and then attempts to lock x. These threads are deadlocked: A
can’t continue until B unlocks y, and B can’t continue until A
unlocks x. Extend your implementation of locks in the previous
exercise to detect these kinds of simple deadlocks.

20.3 Reimplement the Chan interface in thread.c without using sema-
phores. Design a suitable representation for channels, and use the
internal queue and thread functions directly instead of the sema-
phore functions. Be careful about alerts. Devise a test suite that
measures the benefits of this presumably more efficient imple-
mentation. Quantify the level of message activity that an applica-
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tion must have for this revised implementation to make a mea-
surable difference in runtime.

20.4 Design and implement an interface for asynchronous, buffered
communications — an interthread message facility in which the
sender doesn’t wait for the message to be received, and messages
are buffered until they’re received. Your design should permit
messages to outlive their sending threads; that is, for a thread to
send a message and then exit before that message is received.
Asynchronous communication is more complicated than Chan’s
synchronous communication, because it must cope with storage
management for the buffered messages and with more error con-
ditions, for example, providing a way for a thread to determine
whether a message has been received.

20.5 Modula-3 supports condition variables. A condition variable c is
associated with a lock m. The atomic operation sleep(m, c)
causes the calling thread to unlock m and wait on c. The calling
thread must have m locked. wakeup(c) causes one or more
threads waiting on c to resume execution; one of those relocks m
and returns from its call to sleep. broadcast(c) is like
wakeup(c), but all threads sleeping on c resume execution. Alerts
don’t affect threads blocked on a condition variable, unless they
called alertsleep instead of sleep. When a thread that has
called alertsleep is alerted, it locks m and raises
Thread_Alerted. Design and implement an interface that sup-
ports condition variables; use your locks from Exercise 20.1.

20.6 If your system supports nonblocking I/O system calls, use them to
build a thread-safe implementation of C’s standard I/O library.
That is, when one thread calls fgetc, for example, other threads
can execute while that thread waits for input.

20.7 Devise a way to make the Thread and Sem functions atomic with-
out using _MONITOR and _ENDMONITOR. Hints: A single global criti-
cal flag isn’t enough. You’ll need a critical flag for each thread, and
the assembly-language code will need to modify this flag. Be care-
ful — it is incredibly easy to make subtle errors using this
approach.
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20.8 Extend Thread_new so that it accepts optional arguments that
specify the stack size. For example,

t = Thread_new(…, "stacksize", 4096, NULL);

would create a thread with a 4K byte stack.

20.9 Add support for a small number of priorities to Thread’s imple-
mentation as suggested in Section 20.1. Modify Thread_init and
Thread_new so they accept priority specifications as optional
arguments. Tanenbaum (1995) describes how to implement a fair
scheduling policy that supports priorities.

20.10 DCE supports templates, which are essentially associative tables
of thread attributes. When a thread is created with DCE’s
pthread_create, a template supplies attributes such as stack
size and priority. Templates avoid repeating the same arguments
in thread-creation calls, and let thread attributes be specified
other than at the creation site. Design a template facility for
Thread using Table_Ts, and revise Thread_new so that it accepts
a template as one of its optional arguments.

20.11 Implement Thread and Sem on a multiprocessor with shared
memory, such as a Sequent. This implementation is more compli-
cated than the implementation detailed in Section 20.3 because
threads really do execute concurrently on a multiprocessor. Imple-
menting atomic operations will require some form of low-level
spin locks that ensure exclusive access to short critical regions
that access shared data structures, like those in the Thread and
Sem functions.

20.12 Implement Thread, Sem, and Chan on a massively parallel proces-
sor (MPP) with many processors, like the Cray T3D, which is com-
posed of  DEC ALPHA processors. On MPPs, each processor has
its own memory, and there’s some low-level mechanism (usually
implemented in hardware) for one processor to access the mem-
ory of another. One of the challenges in this exercise is deciding
how to map the shared-memory model favored by the Thread,
Sem, and Chan interfaces onto the distributed-memory model pro-
vided by MPPs. 

2
n
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20.13 Implement Thread, Sem, and Chan using DCE threads. Be sure to
specify what system-dependent optional parameters your imple-
mentation of Thread_new accepts.

20.14 Implement Thread, Sem, and Chan using LWPs on Solaris 2, pro-
viding optional parameters for Thread_new as necessary.

20.15 Implement Thread, Sem, and Chan using POSIX threads (see
Kleiman, Shah, and Smaalders 1996).

20.16 Implement Thread, Sem, and Chan using Microsoft’s Win32
threads interface (see Richter 1995).

20.17 If you have access to a C compiler for the SPARC, such as lcc
(Fraser and Hanson 1995), modify the compiler so that it doesn’t
use the SPARC register windows, which eliminates the ta 3 system
call in _swtch. You’ll have to recompile any libraries you use, too.
Measure the resulting improvements in runtime. Warning: This
exercise is a large project.

20.18 Thread_new must allocate a stack because most compilation sys-
tems assume that a contiguous stack has already been allocated
when a program begins execution. A few systems, such as the
Cray-2, allocate the stack in chunks, on the fly. The function entry
sequence allocates the frame in the current chunk, if it fits; other-
wise, it allocates a new chunk of sufficient size and links it to the
current chunk. The exit sequence unlinks and deallocates a chunk
when its last frame is removed. This approach not only simplifies
thread creation, but also checks for stack overflow automatically.
Modify a C compiler to use this approach, and measure its bene-
fits. As with the previous exercise, you’ll need to recompile any
libraries you use; this exercise, too, is a large project.
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INTERFACE SUMMARY

Interface summaries are listed below in alphabetical order; the sub-
sections name each interface and its primary type, if it has one. The nota-
tion “T is opaque X_T” indicates that interface X exports an opaque
pointer type X_T, abbreviated as T in the descriptions. The representa-
tion for X_T is given, if the interface reveals its primary type.

The summary for each interface lists, in alphabetical order, the
exported variables, excluding exceptions, followed by the exported func-
tions. The prototype for each function is followed by the exceptions it
can raise and a concise description. The abbreviations c.r.e. and u.r.e.
stand for checked and unchecked runtime error(s).

The following table summarizes the interfaces by category and gives
the pages on which the summaries begin.

Fundamentals ADTs Strings Arithmetic Threads

Arena 471
Arith 472
Assert 474
Except 476
Mem 479

Array 472
ArrayRep 473
Bit 474
List 478
Ring 483
Seq 485
Set 486
Stack 487
Table 490

Atom 474
Fmt 477
Str 487
Text 491

AP 470
MP 480
XP 494

Chan 476
Sem 484
Thread 493
469
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AP T is opaque AP_T

It is a c.r.e. to pass a null T to any AP function.

T AP_add(T x, T y) Mem_Failed
T AP_addi(T x, long int y) Mem_Failed

return the sum x + y.
int AP_cmp(T x, T y)
int AP_cmpi(T x, long int y)

return an int <0, =0, or >0 if x<y, x=y, or x>y.
T AP_div(T x, T y) Mem_Failed
T AP_divi(T x, long int y) Mem_Failed

return the quotient x/y; see Arith_div. It is a c.r.e. for y=0.
void AP_fmt(int code, va_list *app, Mem_Failed

int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision)

a Fmt conversion function: consumes a T and formats it like printf’s
%d. It is a c.r.e. for app or flags to be null.

void AP_free(T *z)
deallocates and clears *z. It is a c.r.e. for z or *z to be null.

T AP_fromstr(const char *str, int base, Mem_Failed
char **end)

interprets str as an integer in base and returns the resulting T.
Ignores leading white space and accepts an optional sign followed by
one or more digits in base. For 10<base≤36, lowercase or uppercase
letters are interpreted as digits greater than 9. If end≠null, *end
points to the character in str that terminated the scan. If str does
not specify an integer in base, AP_fromstr returns null and sets *end
to str, if end is nonnull. It is c.r.e. for str=null or for base<2 or
base>36.

T AP_lshift(T x, int s) Mem_Failed
returns x shifted left by s bits; vacated bits are filled with zeros, and
the result has the same sign as x. It is a c.r.e. for s<0.

T AP_mod(T x, T y) Mem_Failed
long AP_modi(T x, long int y) Mem_Failed

return x mod y; see Arith_mod. It is a c.r.e. for y=0.
T AP_mul(T x, T y) Mem_Failed
T AP_muli(T x, long int y) Mem_Failed

return the product x•y.
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T AP_neg(T x) Mem_Failed
returns −x.

T AP_new(long int n) Mem_Failed
allocates and returns a new T initialized to n.

T AP_pow(T x, T y, T p) Mem_Failed
returns  mod p. If p=null, returns . It is a c.r.e for y<0 or for a non-
null p<2.

T AP_rshift(T x, int s) Mem_Failed
returns x shifted right by s bits; vacated bits are filled with zeros, and
the result has the same sign as x. It is a c.r.e. for s<0.

T AP_sub(T x, T y) Mem_Failed
T AP_subi(T x, long int y) Mem_Failed

return the difference x − y.
long int AP_toint(T x)

returns a long with same sign as x and magnitude  mod
LONG_MAX+1.

char *AP_tostr(char *str, int size, Mem_Failed
int base, T x)

fills str[0..size-1] with the character representation of x in base
and returns str. If str=null, AP_tostr allocates it. Uppercase letters
are used for digits that exceed 9 when base>10. It is c.r.e. for a non-
null str to be too small or for base<2 or base>36.

Arena T is opaque Arena_T

It is a c.r.e. to pass nbytes≤0 or a null T to any Arena function.

void *Arena_alloc(T arena, long nbytes, Arena_Failed
const char *file, int line)

allocates nbytes bytes in arena and returns a pointer to the first byte.
The bytes are uninitialized. If Arena_alloc raises Arena_Failed,
file and line are reported as the offending source coordinates.

void *Arena_calloc(T arena, long count, Arena_Failed
 long nbytes, const char *file, int line)

allocates space in arena for an array of count elements, each occupy-
ing nbytes, and returns a pointer to the first element. It is a c.r.e. for
count≤0. The elements are uninitialized. If Arena_calloc raises
Arena_Failed, file and line are reported as the offending source
coordinates.

xy xy

x
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void Arena_dispose(T *ap)
deallocates all of the space in *ap, deallocates the arena itself, and
clears *ap. It is a c.r.e. for ap or *ap to be null.

void Arena_free(T arena)
deallocates all of the space in arena — all of the space allocated since
the last call to Arena_free.

T Arena_new(void) Arena_NewFailed
allocates, initializes, and returns a new arena.

Arith

int Arith_ceiling(int x, int y)
returns the least integer not less than the real quotient of x/y. It is a
u.r.e. for y=0.

int Arith_div(int x, int y)
returns x/y, the maximum integer that does not exceed the real num-
ber z such that z•y = x. Truncates toward −∞; e.g., Arith_div(−13, 5)
returns −3. It is a u.r.e. for y=0.

int Arith_floor(int x, int y)
returns the greatest integer not exceeding the real quotient of x/y. It is
a u.r.e. for y=0.

int Arith_max(int x, int y)
returns max(x, y).

int Arith_min(int x, int y)
returns min(x, y).

int Arith_mod(int x, int y)
returns x − y•Arith_div(x, y); e.g., Arith_mod(−13, 5) returns 2. It
is a u.r.e. for y=0.

Array T is opaque Array_T

Array indices run from zero to N−1, where N is the length of the array.
The empty array has no elements. It is a c.r.e. to pass a null T to any
Array function.
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T Array_copy(T array, int length) Mem_Failed
creates and returns a new array that holds the initial length elements
from array. If length exceeds the length of array, the excess ele-
ments are cleared.

void Array_free(T *array)
deallocates and clears *array. It is a c.r.e. for array or *array to be
null.

void *Array_get(T array, int i)
returns a pointer to the ith element in array. It is a c.r.e. for i<0 or
i≥N, where N is the length of array.

int Array_length(T array)
returns the number of elements in array.

T Array_new(int length, int size) Mem_Failed
allocates, initializes, and returns a new array of length elements each
of size bytes. The elements are cleared. It is a c.r.e. for length<0 or
size≤0.

void *Array_put(T array, int i, void *elem)
copies Array_size(array) bytes from elem into the ith element in
array and returns elem. It is a c.r.e. for elem=null or for i<0 or i≥N,
where N is the length of array.

void Array_resize(T array, int length) Mem_Failed
changes the number of elements in array to length. If length
exceeds the original length, the excess elements are cleared. It is a
c.r.e. for length<0.

int Array_size(T array)
returns the size in bytes of the elements in array.

ArrayRep T is Array_T

typedef struct T {
int length; int size; char *array; } *T;

It is a u.r.e. to change the fields in a T.

void ArrayRep_init(T array, int length,
int size, void *ary)

initializes the fields in array to the values of length, size, and ary.
It is a c.r.e. for length≠0 and ary=null, length=0 and ary≠null, or
size≤0. It is a u.r.e. to initialize a T by other means.
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Assert

assert(e)
raises Assert_Failed if e is zero. Syntactically, assert(e) is an
expression. If NDEBUG is defined when assert.h is included, asser-
tions are disabled.

Atom

It is a c.r.e. to pass a null str to any Atom function. It is a u.r.e. to modify
an atom.

int Atom_length(const char *str)
returns the length of the atom str. It is a c.r.e. for str not to be an
atom.

const char *Atom_new(const char *str, int len) Mem_Failed
returns the atom for str[0..len-1], creating one if necessary. It is a
c.r.e. for len<0.

const char *Atom_string(const char *str) Mem_Failed
returns Atom_new(str, strlen(str)).

const char *Atom_int(long n) Mem_Failed
returns the atom for the decimal string representation of n.

Bit T is opaque Bit_T

The bits in a bit vector are numbered zero to N−1, where N is the length
of the vector. It is a c.r.e to pass a null T to any Bit function, except for
Bit_union, Bit_inter, Bit_minus, and Bit_diff.

void Bit_clear(T set, int lo, int hi)
clears bits lo..hi in set. It is a c.r.e. for lo>hi, or for lo<0 or lo≥N
where N is the length of set; likewise for hi.

int Bit_count(T set)
returns the number of ones in set.
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T Bit_diff(T s, T t) Mem_Failed
returns the symmetric difference s / t: the exclusive OR of s and t. If
s=null or t=null, it denotes the empty set. It is a c.r.e. for s=null and
t=null, or for s and t to have different lengths.

int Bit_eq(T s, T t)
returns 1 if s = t and zero otherwise. It is a c.r.e. for s and t to have
different lengths.

void Bit_free(T *set)
deallocates and clears *set. It is a c.r.e. for set or *set to be null.

int Bit_get(T set, int n)
returns bit n. It is a c.r.e. for n<0 or n≥N where N is the length of set.

T Bit_inter(T s, T t) Mem_Failed
returns s ∩ t: the logical AND of s and t. See Bit_diff for c.r.e.

int Bit_length(T set)
returns the length of set.

int Bit_leq(T s, T t)
returns 1 if s ⊆ t and zero otherwise. See Bit_eq for c.r.e.

int Bit_lt(T s, T t)
returns 1 if s ⊂ t and zero otherwise. See Bit_eq for c.r.e.

void Bit_map(T set,
void apply(int n, int bit, void *cl), void *cl)

calls apply(n, bit, cl) for each bit in set from zero to N−1, where N
is the length of set. Changes to set by apply affect subsequent val-
ues of bit.

T Bit_minus(T s, T t) Mem_Failed
returns s − t: the logical AND of s and ~t. See Bit_diff for c.r.e.

T Bit_new(int length) Mem_Failed
creates and returns a new bit vector of length zeros. It is a c.r.e. for
length<0.

void Bit_not(T set, int lo, int hi)
complements bits lo..hi in set. See Bit_clear for c.r.e.

int Bit_put(T set, int n, int bit)
sets bit n to bit and returns the previous value of bit n. It is a c.r.e. for
bit<0 or bit>1, or for n<0 or n≥N, where N is the length of set.

void Bit_set(T set, int lo, int hi)
sets bits lo..hi in set. See Bit_clear for c.r.e.

T Bit_union(T s, T t) Mem_Failed
returns s ∪ t: the inclusive OR of s and t. See Bit_diff for c.r.e.
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Chan T is opaque Chan_T

It is a c.r.e. to pass a null T to any Chan function, or to call any Chan func-
tion before calling Thread_init.

T Chan_new(void) Mem_Failed
creates, initializes, and returns a new channel.

int Chan_receive(T c, void *ptr, int size) Thread_Alerted
waits for a corresponding Chan_send, then copies up to size bytes
from the sender to ptr, and returns the number copied. It is a c.r.e. for
ptr=null or size<0.

int Chan_send(T c, const void *ptr, int size Thread_Alerted
waits for a corresponding Chan_receive, then copies up to size
bytes from ptr to the receiver, and returns the number copied. See
Chan_receive for c.r.e.

Except T is Except_T

typedef struct T { char *reason; } T;

The syntax of TRY statements is as follows; S and e denote statements
and exceptions. The ELSE clause is optional.

TRY S EXCEPT( )  … EXCEPT( )  ELSE  END_TRY

TRY S FINALLY  END_TRY

void Except_raise(const T *e, const char *file, int line)
raises exception *e at source coordinate file and line. It is a c.r.e.
for e=null. Uncaught exceptions cause program termination.

RAISE(e)
raises e.

RERAISE
reraises the exception that caused execution of a handler.

RETURN
RETURN expression

is a return statement used within TRY statements. It is a u.r.e. to use a
C return statement in TRY statements.

e1 S1 en Sn S0

S1
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Fmt T is Fmt_T

typedef void (*T)(int code,
va_list *app, int put(int c, void *cl), void *cl,
unsigned char flags[256], int width, int precision)

defines the type of a conversion function, which is called by the Fmt
functions when the associated conversion specifier appears in a format
string. Here and below, put(c, cl) is called to emit each formatted
character c. Table 14.1 (page 220) summarizes the initial set of conver-
sion specifiers. It is a c.r.e to pass a null put, buf, or fmt to any Fmt func-
tion, or for a format string to use a conversion specifier that has no
associated conversion function.

char *Fmt_flags = "-+ 0"
points to the flag characters that can appear in conversion specifiers.

void Fmt_fmt(int put(int c, void *cl), void *cl,
const char *fmt, ...)

formats and emits the “…” arguments according to the format string
fmt.

void Fmt_fprint(FILE *stream, const char *fmt, ...)
void Fmt_print(const char *fmt, ...)

format and emit the “…” arguments according to fmt; Fmt_fprint
writes to stream, and Fmt_print writes to stdout.

void Fmt_putd(const char *str, int len,
int put(int c, void *cl), void *cl,
unsigned char flags[256], int width, int precision)

void Fmt_puts(const char *str, int len,
int put(int c, void *cl), void *cl,
unsigned char flags[256], int width, int precision)

format and emit the converted numeric (Fmt_putd) or string
(Fmt_puts) in str[0..len-1] according to Fmt’s defaults (see Table
14.1, page 220) and the values of flags, width, and precision. It is a
c.r.e for str=null, len<0, or flags=null.

T Fmt_register(int code, T cvt)
associates cvt with the format character code, and returns the previ-
ous conversion function. It is a c.r.e. for code<0 or code>255.
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int Fmt_sfmt(char *buf, int size, Fmt_Overflow
const char *fmt, ...)

formats the “…” arguments into buf[1..size-1] according to fmt,
appends a null character, and returns the length of buf. It is a c.r.e. for
size≤0. Raises Fmt_Overflow if more than size−1 characters are
emitted.

char *Fmt_string(const char *fmt, ...)
formats the “…” arguments into a null-terminated string according to
fmt and returns that string.

void Fmt_vfmt(int put(int c, void *cl), void *cl,
const char *fmt, va_list ap)

See Fmt_fmt; takes arguments from the list ap.
int Fmt_vsfmt(char *buf, int size, Fmt_Overflow

const char *fmt, va_list ap)
See Fmt_sfmt; takes arguments from the list ap.

char *Fmt_vstring(const char *fmt, va_list ap)
See Fmt_string; takes arguments from the list ap.

List T is List_T

typedef struct T *T;
struct T { T rest; void *first; };

All List functions accept a null T for any list argument and interpret it
as the empty list.

T List_append(T list, T tail)
appends tail to list and returns list. If list=null, List_append
returns tail.

T List_copy(T list) Mem_Failed
creates and returns a top-level copy of list.

void List_free(T *list)
deallocates and clears *list. It is a c.r.e. for list=null.

int List_length(T list)
returns the number of elements in list.

T List_list(void *x, ...) Mem_Failed
creates and returns a list whose elements are the “…” arguments up to
the first null pointer.
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void List_map(T list,
void apply(void **x, void *cl), void *cl)

calls apply(&p->first, cl) for each element p in list. It is a u.r.e.
for apply to change list.

T List_pop(T list, void **x)
assigns list->first to *x, if x is nonnull, deallocates list, and
returns list->rest. If list=null, List_pop returns null and does not
change *x.

T List_push(T list, void *x) Mem_Failed
adds a new element that holds x onto the front of list and returns
the new list.

T List_reverse(T list)
reverses the elements in list in place and returns the reversed list.

void **List_toArray(T list, void *end) Mem_Failed
creates an N+1-element array of the N elements in list and returns a
pointer to its first element. The Nth element in the array is end.

Mem

It is a c.r.e. to pass nbytes≤0 to any Mem function or macro.

ALLOC(nbytes) Mem_Failed
allocates nbytes bytes and returns a pointer to the first byte. The
bytes are uninitialized. See Mem_alloc.

CALLOC(count, nbytes) Mem_Failed
allocates space for an array of count elements, each occupying
nbytes bytes, and returns a pointer to the first element. It is a c.r.e.
for count≤0. The elements are cleared. See Mem_calloc.

FREE(ptr)
deallocates ptr, if ptr is nonnull, and clears ptr. ptr is evaluated
more than once. See  Mem_free.

void *Mem_alloc(long nbytes, Mem_Failed
const char *file, int line)

allocates nbytes bytes and returns a pointer to the first byte. The
bytes are uninitialized. If Mem_alloc raises Mem_Failed, file and
line are reported as the offending source coordinates.
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void *Mem_calloc(long count, long nbytes, Mem_Failed
const char *file, int line)

allocates space for an array of count elements, each occupying
nbytes bytes, and returns a pointer to the first element. It is a c.r.e.
for count≤0. The elements are cleared, which does not necessarily ini-
tialize pointers to null or floating-point values to 0.0. If Mem_calloc
raises Mem_Failed, file and line are reported as the offending
source coordinate.

void Mem_free(void *ptr, const char *file, int line)
deallocates ptr, if ptr is nonnull. It is a u.r.e. for ptr to be a pointer
that was not returned by a previous call to a Mem allocation function.
Implementations may use file and line to report memory-usage
errors.

void *Mem_resize(void *ptr, long nbytes, Mem_Failed
const char *file, int line)

changes the size of the block at ptr to hold nbytes bytes, and returns
a pointer to the first byte of the new block. If nbytes exceeds the size
of the original block, the excess bytes are uninitialized. If nbytes is
less than the size of the original block, only nbytes of its bytes appear
in the new block. If Mem_resize raises Mem_Failed, file and line
are reported as the offending source coordinates. It is a c.r.e. for
ptr=null, and it is a u.r.e. for ptr to be a pointer that was not returned
by a previous call to a Mem allocation function.

NEW(p) Mem_Failed
NEW0(p) Mem_Failed

allocate a block large enough to hold *p, set p to the address of the
block, and return that address. NEW0 clears the bytes, and NEW leaves
them uninitialized. Both macros evaluate ptr once.

RESIZE(ptr, nbytes) Mem_Failed
changes the size of the block at ptr to hold nbytes bytes, reaims ptr
at the resized block, and returns the address of the block. ptr is eval-
uated more than once. See Mem_resize.

MP T is MP_T

typedef unsigned char *T

MP functions do n-bit signed and unsigned arithmetic, where n is initially
32 and can be changed by MP_set. Function names that end in u or ui do



MP 481
unsigned arithmetic; others do signed arithmetic. MP functions compute
their results before raising MP_Overflow or MP_DivideByZero. It is a
c.r.e. to pass a null T to any MP function. It is a u.r.e. to pass a T that is
too small to any MP function.

T MP_add(T z, T x, T y) MP_Overflow
T MP_addi(T z, T x, long y) MP_Overflow
T MP_addu(T z, T x, T y) MP_Overflow
T MP_addui(T z, T x, unsigned long y) MP_Overflow

set z to x + y and return z.
T MP_and(T z, T x, T y)
T MP_andi(T z, T x, unsigned long y)

set z to x AND y and return z.
T MP_ashift(T z, T x, int s)

sets z to x shifted right by s bits and returns z. Vacated bits are filled
with x’s sign bit. It is a c.r.e. for s<0.

int MP_cmp(T x, T y)
int MP_cmpi(T x, long y)
int MP_cmpu(T x, T y)
int MP_cmpui(T x, unsigned long y)

return an int <0, =0, or >0 if x<y, x=y, or x>y.
T MP_cvt(int m, T z, T x) MP_Overflow
T MP_cvtu(int m, T z, T x) MP_Overflow

narrow or widen x to an m-bit signed or unsigned integer in z and
return z. It is a c.r.e. for m<2.

T MP_div(T z, T x, T y) MP_Overflow, MP_DivideByZero
T MP_divi(T z, T x, long y) MP_Overflow, MP_DivideByZero
T MP_divu(T z, T x, T y) MP_DivideByZero
T MP_divui(T z, T x, MP_Overflow, MP_DivideByZero

unsigned long y)
set z to x/y and return z. The signed functions truncate toward −∞; see
Arith_div.

void MP_fmt(int code, va_list *app,
int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision)

void MP_fmtu(int code, va_list *app,
int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision)

are Fmt conversion functions. They consume a T and a base b and for-
mat it like printf’s %d and %u. It is a c.r.e. for the b<2 or b>36, and for
app or flags to be null.
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T MP_fromint(T z, long v) MP_Overflow
T MP_fromintu(T z, unsigned long u) MP_Overflow

set z to v or u and return z.
T MP_fromstr(T z, const char *str, int base, MP_Overflow

char **end)
interprets str as an integer in base, sets z to that integer, and returns
z. See AP_fromstr.

T MP_lshift(T z, T x, int s)
set z to x shifted left by s bits and return z. Vacated bits are filled with
zeros. It is a c.r.e. for s<0.

T MP_mod(T z, T x, T y) MP_Overflow, MP_DivideByZero
sets z to x mod y and returns z. Truncates toward −∞; see Arith_mod.

long MP_modi(T x, long y) MP_Overflow, MP_DivideByZero
returns x mod y. Truncates toward −∞; see Arith_mod. 

T MP_modu(T z, T x, T y) MP_DivideByZero
sets z to x mod y and returns z.

unsigned long MP_modui(T x, MP_Overflow, MP_DivideByZero
unsigned long y)

returns x mod y.
T MP_mul(T z, T x, T y) MP_Overflow

sets z to x•y and returns z.
T MP_mul2(T z, T x, T y) MP_Overflow
T MP_mul2u(T z, T x, T y) MP_Overflow

set z to the double-length result of x•y and return z, which has 2n
bits.

T MP_muli(T z, T x, long y) MP_Overflow
T MP_mulu(T z, T x, T y) MP_Overflow
T MP_mului(T z, T x, unsigned long y) MP_Overflow

set z to x•y and return z.
T MP_neg(T z, T x) MP_Overflow

sets z to −x and returns z.
T MP_new(unsigned long u) Mem_Failed, MP_Overflow

creates and returns a T initialized to u.
T MP_not(T z, T x)

sets z to ~x and returns z.
T MP_or(T z, T x, T y)
T MP_ori(T z, T x, unsigned long y)

set z to x OR y and return z.
T MP_rshift(T z, T x, int s)

sets z to x shifted right by s bits and returns z. Vacated bits are filled
with zeros. It is a c.r.e. for s<0.
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int MP_set(int n) Mem_Failed
resets MP to do n-bit arithmetic. It is a c.r.e. for n<2.

T MP_sub(T z, T x, T y) MP_Overflow
T MP_subi(T z, T x, long y) MP_Overflow
T MP_subu(T z, T x, T y) MP_Overflow
T MP_subui(T z, T x, unsigned long y) MP_Overflow

set z to x − y and return z.
long int MP_toint(T x) MP_Overflow
unsigned long MP_tointu(T x) MP_Overflow

return x as a long int or unsigned long.
char *MP_tostr(char *str, int size, Mem_Failed

int base, T x)
fills str[0..size-1] with a null-terminated string representing x in
base, and returns str. If str=null, MP_tostr ignores size and allo-
cates the string. See AP_tostr.

T MP_xor(T z, T x, T y)
T MP_xori(T z, T x, unsigned long y)

set z to x XOR y and return z.

Ring T is opaque Ring_T

Ring indices run from zero to N−1, where N is the length of the ring. The
empty ring has no elements. Pointers can be added or removed any-
where; rings expand automatically. Rotating a ring changes its origin. It
is a c.r.e. to pass a null T to any Ring function.

void *Ring_add(T ring, int pos, void *x) Mem_Failed
inserts x at position pos in ring and returns x. Positions identify
points between elements; see Str. It is a c.r.e. for pos < −N or
pos > N+1, where N is the length of ring.

void *Ring_addhi(T ring, void *x) Mem_Failed
void *Ring_addlo(T ring, void *x) Mem_Failed

adds x to the high (index N−1) or low (index 0) end of ring and
returns x.

void Ring_free(T *ring)
deallocates and clears *ring. It is a c.r.e. for ring or *ring to be null.

int Ring_length(T ring)
returns the number of elements in ring.
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void *Ring_get(T ring, int i)
returns the ith element in ring. It is a c.r.e. for i<0 or i≥N, where N is
the length of ring.

T Ring_new(void) Mem_Failed
creates and returns an empty ring.

void *Ring_put(T ring, int i, void *x) Mem_Failed
changes the ith element in ring to x and returns the previous value.
See Ring_get for c.r.e.

void *Ring_remhi(T ring)
void *Ring_remlo(T ring)

removes and returns the element at the high end (index N−1) or low
end (index 0) of ring. It is a c.r.e. for ring to be empty.

void *Ring_remove(T ring, int i)
removes and returns element i from ring. It is a c.r.e. for i<0 or i≥N,
where N is the length of ring.

T Ring_ring(void *x, ...) Mem_Failed
creates and returns a ring whose elements are the “…” arguments up
to the first null pointer.

void Ring_rotate(T ring, int n)
rotates the origin of ring n elements left (n<0) or right (n≥0). It is a
c.r.e. for <0 or >N, where N is the length of ring.

Sem T is opaque Sem_T

typedef struct T { int count; void *queue; } T;

It is a u.r.e. to read or write the fields in a T directly, or to pass an unini-
tialized T to any Sem function. It is a c.r.e. to pass a null T to any Sem
function, or to call any Sem function before calling Thread_init.

The syntax of the LOCK statement is as follows; S and m denote state-
ments and a T.

LOCK(m) S END_LOCK

m is locked, statements S are executed and m is unlocked. LOCK can
raise Thread_Alerted.

n n
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void Sem_init(T *s, int count)
sets s->count to count. It is a u.r.e. to call Sem_init more than once
on the same T.

Sem_T *Sem_new(int count) Mem_Failed
creates and returns a T with its count field initialized to count.

void Sem_wait(T *s) Thread_Alerted
waits until s->count>0, then decrements s->count.

void Sem_signal(T *s) Thread_Alerted
increments s->count.

Seq T is opaque Seq_T

Sequence indices run from zero to N−1, where N is the length of the
sequence. The empty sequence has no elements. Pointers can be added
or removed from the low end (index zero) or the high end (index N−1);
sequences expand automatically. It is a c.r.e. to pass a null T to any Seq
function.

void *Seq_addhi(T seq, void *x) Mem_Failed
void *Seq_addlo(T seq, void *x) Mem_Failed

adds x to the high or low end of seq and returns x.
void Seq_free(T *seq)

deallocates and clears *seq. It is a c.r.e. for seq or *seq to be null.
int Seq_length(T seq)

returns the number of elements in seq.
void *Seq_get(T seq, int i)

returns the ith element in seq. It is a c.r.e. for i<0 or i≥N, where N is
the length of seq.

T Seq_new(int hint) Mem_Failed
creates and returns an empty sequence. hint is an estimate of the
maximum size of the sequence. It is a c.r.e for hint<0.

void *Seq_put(T seq, int i, void *x)
changes the ith element in seq to x and returns the previous value.
See Seq_get for c.r.e.

void *Seq_remhi(T seq)
void *Seq_remlo(T seq)

remove and return the element at the high or low end of seq. It is a
c.r.e. for seq to be empty.
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T Seq_seq(void *x, ...) Mem_Failed
creates and returns a sequence whose elements are the “…” argu-
ments up to the first null pointer.

Set T is opaque Set_T

It is a c.r.e. to pass a null member or T to any Set function, except for
Set_diff, Set_inter, Set_minus, and Set_union, which interpret a
null T as the empty set.

T Set_diff(T s, T t) Mem_Failed
returns the symmetric difference s / t: a set whose members appear in
only one of s or t. It is a c.r.e. for both s=null and t=null, or for non-
null s and t to have different cmp and hash functions.

void Set_free(T *set)
deallocates and clears *set. It is a c.r.e. for set or *set to be null.

T Set_inter(T s, T t) Mem_Failed
returns s ∩ t: a set whose members appears in s and t. See Set_diff
for c.r.e.

int Set_length(T set)
returns the number of elements in set.

void Set_map(T set,
void apply(const void *member, void *cl), void *cl)

calls apply(member, cl) for each member ∈ set. It is a c.r.e. for apply
to change set.

int Set_member(T set, const void *member)
returns one if member ∈ set and zero otherwise.

T Set_minus(T s, T t) Mem_Failed
returns the difference s − t: a set whose members appear in s but not
in t. See Set_diff for c.r.e.

T Set_new(int hint, Mem_Failed
int cmp(const void *x, const void *y),
unsigned hash(const void *x))

creates, initializes, and returns an empty set. See Table_new for an
explanation of hint, cmp, and hash.

void Set_put(T set, const void *member) Mem_Failed
adds member to set, if necessary.
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void *Set_remove(T set, const void *member)
removes member from set, if member ∈ set, and returns the removed
member; otherwise, Set_remove returns null.

void **Set_toArray(T set, void *end) Mem_Failed
creates a N+1-element array that holds the N members in set in an
unspecified order and returns a pointer to the first element. Element
N is end.

T Set_union(T s, T t) Mem_Failed
returns s ∪ t: a set whose members appear in s or t. See Set_diff for
c.r.e.

Stack T is opaque Stack_T

It is a c.r.e. to pass null T to any Stack function.

int Stack_empty(T stk)
returns one if stk is empty and zero otherwise.

void Stack_free(T *stk)
deallocates and clears *stk. It is a c.r.e. for stk or *stk to be null.

T Stack_new(void) Mem_Failed
returns a new, empty T.

void *Stack_pop(T stk)
pops and returns the top element on stk. It is a c.r.e. for stk to be
empty.

void Stack_push(T stk, void *x) Mem_Failed
pushes x onto stk.

Str

The Str functions manipulate null-terminated strings. Positions identify
points between characters; for example, the positions in STRING are:

Any two positions can be given in either order. Str functions that create
strings allocate space for their results. In the descriptions below, s[i:j]

S
1
6– T

2
5– R

3
4– I

4
3– N

5
2– G

6
1–  

7
0
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denotes the substring of s between positions i and j.  It is a c.r.e. to pass
a nonexistent position or a null character pointer to any Str function,
except as specified for Str_catv and Str_map.

int Str_any(const char *s, int i, const char *set)
returns the positive position in s after s[i:i+1] if that character
appears in set, or zero otherwise. It is a c.r.e. for set=null.

char *Str_cat(const char *s1, int i1, int j1, Mem_Failed
const char *s2, int i2, int j2)

returns s1[i1:j1] concatenated with s2[i2:j2].
char *Str_catv(const char *s, ...) Mem_Failed

returns a string consisted of the triples in “…” up to a null pointer.
Each triple specifies an s[i:j].

int Str_chr(const char *s, int i, int j, int c)
returns the position in s before the leftmost occurrence of c in
s[i:j], or zero otherwise.

int Str_cmp(const char *s1, int i1, int j1,
const char *s2, int i2, int j2)

returns an integer <0, =0, or >0 if s1[i1:j1]<s2[i2:j2],
s1[i1:j1]=s2[i2:j2], or s1[i1:j1]>s2[i2:j2].

char *Str_dup(const char *s, int i, int j, Mem_Failed
int n)

returns n copies of s[i:j]. It is a c.r.e. for n<0.
int Str_find(const char *s, int i, int j, const char *str)

returns the position in s before the leftmost occurrence of str in
s[i:j], or zero otherwise. It is a c.r.e. for str=null.

void Str_fmt(int code, va_list *app,
int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision)

is a Fmt conversion function. It consumes three arguments — a string
and two positions — and formats the substring in the style of
printf’s %s. It is a c.r.e. for app or flags to be null.

int Str_len(const char *s, int i, int j)
returns the length of s[i:j].

int Str_many(const char *s, int i, int j, const char *set)
returns the positive position in s after a nonempty run of characters
from set at the beginning of s[i:j], or zero otherwise. It is a c.r.e. for
set=null.
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char *Str_map(const char *s, int i, int j, Mem_Failed
const char *from, const char *to)

returns the string obtained from mapping the characters in s[i:j]
according to from and to. Each character from s[i:j] that appears in
from is mapped to the corresponding character in to. Characters that
do not appear in from map to themselves. If from=null and to=null,
their previous values are used. If s=null, from and to establish a
default mapping. It is a c.r.e. for only one of from or to to be null, for
strlen(from)≠strlen(to), for s, from, and to to all be null, or for
from=null and to=null on the first call.

int Str_match(const char *s, int i, int j, const char *str)
returns the positive position in s if s[i:j] starts with str, or zero
otherwise. It is a c.r.e. for str=null.

int Str_pos(const char *s, int i)
returns the positive position corresponding to s[i:i]; subtracting
one yields the index of s[i:i+1].

int Str_rchr(const char *s, int i, int j, int c)
is the rightmost variant of Str_chr.

char *Str_reverse(const char *s, int i, int j) Mem_Failed
returns a copy of s[i:j] with the characters in the opposite order.

int Str_rfind(const char *s, int i, int j, const char *str)
is the rightmost variant of Str_find.

int Str_rmany(const char *s, int i, int j, const char *set)
returns the positive position in s before a nonempty run of characters
from set at the end of s[i:j], or zero otherwise. It is a c.r.e. for
set=null.

int Str_rmatch(const char *s, int i, int j,
const char *str)

returns the positive position in s before str if s[i:j] ends with str,
or zero otherwise. It is a c.r.e. for str=null.

int Str_rupto(const char *s, int i, int j, const char *set)
is the rightmost variant of Str_upto.

char *Str_sub(const char *s, int i, int j) Mem_Failed
returns s[i:j].

int Str_upto(const char *s, int i, int j, const char *set)
returns the position in s before the leftmost occurrence in s[i:j] of
any character in set, or zero otherwise. It is a c.r.e. for set=null.
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Table T is opaque Table_T

It is a c.r.e. to pass a null T or a null key to any Table function.

void Table_free(T *table)
deallocates and clears *table. It is a c.r.e. for table or *table to be
null.

void *Table_get(T table, const void *key)
returns the value associated with key in table, or null if table does
not hold key.

int Table_length(T table)
returns the number of key-value pairs in table.

void Table_map(T table,
void apply(const void *key, void **value, void *cl),
void *cl)

calls apply(key, &value, cl) for each key-value in table in an
unspecified order. It is a c.r.e. for apply to change table.

T Table_new(int hint, Mem_Failed
int cmp(const void *x, const void *y),
unsigned hash(const void *key))

creates, initializes, and returns a new, empty table that can hold an
arbitrary number of key-value pairs. hint is an estimate of the num-
ber of such pairs expected. It is a c.r.e. for hint<0. cmp and hash are
functions for comparing and hashing keys. For keys x and y,
cmp(x,y) must return an int <0, =0, or >0 if x<y, x=y, or x>y. If
cmp(x,y) returns zero, then hash(x) must equal hash(y). If
cmp=null or hash=null, Table_new uses a function suitable for Atom_T
keys.

void *Table_put(T table, Mem_Failed
const void *key, void *value)

changes the value associated with key in table to value and returns
the previous value, or adds key and value if table does not hold key,
and returns null.

void *Table_remove(T table, const void *key)
removes the key-value pair from table and returns the removed
value. If table does not hold key, Table_remove has no effect and
returns null.

void **Table_toArray(T table, void *end) Mem_Failed
creates a 2N+1-element array that holds the N key-value pairs in
table in an unspecified order and returns a pointer to the first ele-
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ment. The keys appear in the even-numbered array elements and the
corresponding values appear in the following odd-numbered ele-
ments; element 2N is end.

Text T is Text_T

typedef struct T { int len; const char *str; } T;
typedef struct Text_save_T *Text_save_T;

A T is a descriptor; clients can read the fields of a descriptor, but it is a
u.r.e. to write them. Text functions accept and return descriptors by
value; it is a c.r.e. to pass a descriptor with str=null or len<0 to any
Text function.

Text manages the memory for its immutable strings; it is a u.r.e. to
write this string space or deallocate it by external means. Strings in
string space can contain null characters, so are not terminated by them.

Some Text functions accept positions, which identify points between
characters; see Str. In the descriptions below, s[i:j] denotes the sub-
string in s between positions i and j.

const T Text_cset   = { 256, "\000\001…\376\377" }
const T Text_ascii  = { 128, "\000\001…\176\177" }
const T Text_ucase  = {  26, "ABCDEFGHIJKLMNOPQRSTUVWXYZ" }
const T Text_lcase  = {  26, "abcdefhijklmnopqrtuvwxyz" }
const T Text_digits = {  10, "0123456789" }
const T Text_null   = {   0, "" }

are static descriptors initialized as shown.
int Text_any(T s, int i, T set)

returns the positive position in s after s[i:i+1] if that character
appears in set, or zero otherwise.

T Text_box(const char *str, int len)
builds and returns a descriptor for the client-allocated string str of
length len. It is a c.r.e. for str=null or len<0.

T Text_cat(T s1, T s2) Mem_Failed
returns s1 concatenated with s2.

int Text_chr(T s, int i, int j, int c)
See Str_chr.

int Text_cmp(T s1, T s2)
returns an int <0, =0, or >0 if s1<s2, s1=s2, or s1>s2.
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T Text_dup(T s, int n) Mem_Failed
returns n copies of s. It is a c.r.e. for n<0.

int Text_find(T s, int i, int j, T str)
See Str_find.

void Text_fmt(int code, va_list *app,
int put(int c, void *cl), void *cl,
unsigned char flags[], int width, int precision)

is a Fmt conversion function. It consumes a pointer to a descriptor and
formats the string in the style of printf’s %s. It is a c.r.e. for the
descriptor pointer, app, or flags to be null.

char *Text_get(char *str, int size, T s)
copies s.str[0..str.len-1] to str[0..size-1], appends a null, and
returns str. If str=null, Text_get allocates the space. It is a c.r.e. for
str≠null and size<s.len+1.

int Text_many(T s, int i, int j, T set)
See Str_many.

T Text_map(T s, const T *from, const T *to) Mem_Failed
returns the string obtained from mapping the characters in s accord-
ing to from and to; see Str_map. If from=null and to=null, their previ-
ous values are used. It is a c.r.e for only one of from or to to be null, or
for from->len≠to->len.

int Text_match(T s, int i, int j, T str)
See Str_match.

int Text_pos(T s, int i)
See Str_pos.

T Text_put(const char *str) Mem_Failed
copies the null-terminated str into string space and returns its
descriptor. It is a c.r.e. for str=null.

int Text_rchr(T s, int i, int j, int c)
See Str_rchr.

void Text_restore(Text_save_T *save)
pops the string space to the point denoted by save. It is a c.r.e. for
save=null. It is a u.r.e. to use other Text_save_T values that denote
locations higher than save after calling Text_restore.

T Text_reverse(T s) Mem_Failed
returns a copy of s with the characters in the opposite order.

int Text_rfind(T s, int i, int j, T str)
See Str_rfind.

int Text_rmany(T s, int i, int j, T set)
See Str_rmany.
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int Text_rmatch(T s, int i, int j, T str)
See Str_rmatch.

int Text_rupto(T s, int i, int j, T set)
See Str_rupto.

Text_save_T Text_save(void) Mem_Failed
returns an opaque pointer that encodes the current top of the string
space.

T Text_sub(T s, int i, int j)
returns s[i:j].

int Text_upto(T s, int i, int j, T set)
See Str_upto.

Thread T is opaque Thread_T

It is a c.r.e. to call any Thread function before calling Thread_init.

void Thread_alert(T t)
sets t’s alert-pending flag and makes t runnable. The next time t
runs, or calls a blocking Thread, Sem, or Chan primitive, it clears its
flag and raises Thread_Alerted. It is a c.r.e. for t=null or to name a
nonexistent thread.

void Thread_exit(int code)
terminates the calling thread and passes code to any threads waiting
for the calling thread to terminate. When the last thread calls
Thread_exit, the program terminates with exit(code).

int Thread_init(int preempt, ...)
initializes the Thread for nonpreemptive (preempt=0) or preemptive
(preempt=1) scheduling and returns preempt or zero if preempt=1
and preemptive scheduling is not supported. Thread_init may
accept additional implementation-defined parameters; the argument
list must be terminated with a null.  It is a c.r.e. to call Thread_init
more than once.

int Thread_join(T t) Thread_Alerted
suspends the calling thread until thread t terminates. When t termi-
nates, Thread_join returns t’s exit code. If t=null, the calling thread
waits for all other threads to terminate, and then returns zero. It is a
c.r.e. for t to name the calling thread or for more than one thread to
pass a null t.
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T Thread_new(int apply(void *), Thread_Failed
void *args, int nbytes, ...)

creates, initializes, and starts a new thread, and returns its handle. If
nbytes=0, the new thread executes Thread_exit(apply(args)); oth-
erwise, it executes Thread_exit(apply(p)), where p points to a copy
of the nbytes block starting at args. The new thread starts with its
own empty exception stack. Thread_new may accept additional imple-
mentation-defined parameters; the argument list must be terminated
with a null.  It is a c.r.e. for apply=null, or for args=null and
nbytes<0.

void Thread_pause(void)
relinquishes the processor to another thread, perhaps the caller.

T Thread_self(void)
returns the calling thread’s handle.

XP T is XP_T

typedef unsigned char *T;

An extended-precision unsigned integer is represented in base  by an
array of n digits, least significant digit first. Most XP functions take n as
an argument along with source and destination Ts; it is a u.r.e. for n<1 or
for n not to be the length of the corresponding Ts. It is a u.r.e. to pass a
null T or a T that is too small to any XP function.

int XP_add(int n, T z, T x, T y, int carry)
sets z[0..n-1] to x + y + carry and returns the carry out of z[n-1].
carry must be zero or one.

int XP_cmp(int n, T x, T y)
returns an int <0, =0, or >0 if x<y, x=y, or x>y.

int XP_diff(int n, T z, T x, int y)
sets z[0..n-1] to x − y, where y is a single digit, and returns the bor-
row into z[n-1]. It is a u.r.e. for y> .

int XP_div(int n, T q, T x, int m, T y, T r, T tmp)
sets q[0..n-1] to x[0..n-1]/y[0..m-1], r[0..m-1] to x[0..n-1] mod
y[0..m-1], and returns one, if y≠0. If y=0, XP_div returns zero and
leaves q and r unchanged. tmp must hold at least n+m+2 digits. It is a
u.r.e. for q or r to be one of x or y, for q and r to be the same T, or for
tmp to be too small.

2
8

2
8
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unsigned long XP_fromint(int n, T z, unsigned long u)
sets z[0..n-1] to u mod  and returns u/ .

int XP_fromstr(int n, T z, const char *str,
int base, char **end)

interprets str as an unsigned integer in base using z[0..n-1] as the
initial value in the conversion, and returns the first nonzero carry-out
of the conversion step. If end≠null, *end  points to the character in
str that terminated the scan or produced a nonzero carry. See
AP_fromstr.

int XP_length(int n, T x)
returns the length of x; that is, the index plus one of the most signifi-
cant nonzero digit in x[0..n-1].

void XP_lshift(int n, T z, int m, T x, int s, int fill)
sets z[0..n-1] to x[0..m-1] shifted left by s bits, and fills the vacated
bits with fill, which must be zero or one. It is a u.r.e. for s<0.

int XP_mul(T z, int n, T x, int m, T y)
adds x[0..n-1]•y[0..m-1] to z[0..n+m-1] and returns the carry-out of
z[n+m-1]. If z=0, XP_mul computes x•y. It is a u.r.e. for z to be the
same T as x or y.

int XP_neg(int n, T z, T x, int carry)
sets z[0..n-1] to ~x + carry, where carry is zero or one, and returns
the carry-out of z[n-1].

int XP_product(int n, T z, T x, int y)
sets z[0..n-1] to x•y, where y is a single digit, and returns the carry-
out of z[n-1]. It is a u.r.e. for y≥ .

int XP_quotient(int n, T z, T x, int y)
sets z[0..n-1] to x/y, where y is a single digit, and returns x mod y. It
is a u.r.e. for y=0 or y≥ .

void XP_rshift(int n, T z, int m, T x, int s, int fill)
shifts right; see XP_lshift. If n>m, the excess bits are treated as if
they were equal to fill.

int XP_sub(int n, T z, T x, T y, int borrow)
sets z[0..n-1] to x − y − borrow and returns the borrow into z[n-1].
borrow must be zero or one.

int XP_sum(int n, T z, T x, int y)
sets z[0..n-1] to x + y, where y is a single digit, and returns the carry-
out of z[n-1]. It is a u.r.e. for y> .

unsigned long XP_toint(int n, T x)
 returns x mod (ULONG_MAX+1).

2
8n

2
8n

2
8

2
8

2
8



496 INTERFACE SUMMARY
char *XP_tostr(char *str, int size, int base, int n, T x)
fills str[0..size-1] with the character representation of x in base,
sets x to zero, and returns str. It is a c.r.e. for str=null, size to be
too small, or for base<2 or base>36.
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